

MASTERCLASS
SPRING BATCH - MARCH 2025

From Zero to

Robotics Developer

Master Skills, Kickstart Your Career

STARTS ON

March 3, 2025

ESTIMATED TIME

1000 hours

for complete robotics developer readiness

FORMAT

Online

Index

Overview	3	
Program Schedule	6	
Phase 1 – Robotics Developer Novice	6	
Phase 2 – Robotics Developer Beginner	8	
Phase 3 – Robotics Developer Experienced	10	
Phase 4 - Robotics Developer Competent	12	
Phase 5 – Robotics Developer Advanced	15	
Phase 6 – Robotics Developer	17	
Internship Placements	17	
Simulated Robots Used	18	
Real Robots Used	20	
Bonus Robotics Workouts	25	
Frequently Asked Questions	26	

FUTURE-READY

roboticsdeveloper.ai

Robotics Needs **Developers**

Overview

Robots are becoming an essential part of our world. As a result, there is a massive demand for robotics developers to create solutions to everyday problems.

The challenge is that robotics engineering is multidisciplinary and difficult to learn. So we have built the Robotics Developer Masterclass to help you master robotics development from scratch and GET YOU 100% JOB-READY to work at any robotics company.

Completion Time

1000 hours to acquire all skills.

Join **Masterclass Spring Batch on March 3, 2025** and pace yourself through the 1,000-hour program. See the table below for duration based on weekly commitment.

WEEKLY TIME COMMITMENT	COMPLETION TIME IN MONTHS
40 hours	6 months
30 hours	8 months
20 hours	12 months
10 hours	24 months

Assessment

During the program, students must complete the exercises and projects in each phase. In the final project, they must apply all knowledge learned and present it to all tutors. Students who pass the final project will receive a certificate.

FUTURE-READY

roboticsdeveloper.ai

BATCH

Course starts on:

March 3, 2025

Spots:

Only 300 students

Format:

Online

Evaluation language:

English

This Masterclass program is available in four languages:

English, Spanish, Japanese, Korean

Tutor meetings, extra C++ live classes, and Discord channel only in English

Prerequisite:

- Linux knowledge: Take this free course to learn Linux essentials for
- Python 3: Take this free course to learn Python essentials for robotics.
- Basic maths: Check out this course to learn essential math concepts for robotics.

CLASS HIGHLIGHTS

Key Takeaways

Learn to **build robot apps** in an actual integrated development environment

Gain in-demand robotics skills

in a Fast-growing industry

Practice with both simulated &

real robots

All courses are based on hands-

on exercises & projects

Walk away with a robotics

portfolio project to share with

potential employers

Internship opportunities in robotics companies to apply what

you have learned in the real world

Learn, Practice, Get Certified

Get recognized! This program is graded as pass or fail; students will receive a certificate of completion issued by The Construct after completing the final project and passing the final exam.

MASTERCLASS

SPRING BATCH · MARCH 2025

BEGINNER-FRIENDLY

This program is designed for complete beginners, even with no prior experience in robot programming.

PERSONAL MENTOR

Receive 1-on-1 feedback and guidance from robotics experts to ensure your success.

100% PRACTICAL

No videos, no slides—learn by doing with both simulated and real robots.

WE HAVE THE PLAN

Kickstart Your Career in RobDev

FOLLOW A LEARNING PATH

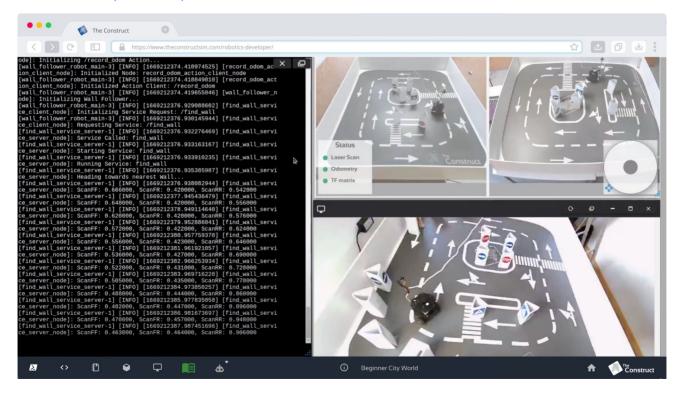
Program Schedule

Phase 1 - Robotics Developer Novice

200 hours

Build the robot programming foundation and get started with ROS.

Acquired Skills:


- Collaborative software development with Git
- C++ programming skills for robotics
- ROS 2 basics
- Robot modeling with URDF ROS 2
- Robot frame transformations with TF ROS 2
- Create robot simulations with Gazebo (Ignition)
- ROS 1 basics

eth ROS.

BEGINNER CITY

BEGINNER CITY

Project of this phase: Apply ROS to the Beginners City Lab and get a mobile robot - TurtleBot3 to perform specific tasks.

MASTERCLASS

SPRING BATCH · MARCH 2025

	•	
WHAT YOU WILL LEA	RN IN THIS PHASE	TIME
1 Git and GitHub Basics	 Git Basics Git Branches Git and GitHub for Team Collaboration	10 hours
2 C++ for Robotics	 How to compile C++ programs How to store data into Variables How to operate with the data in the Variables How to change behavior based on Conditions How to create Functions that can be called from other places of the code How to properly use arrays and pointers How to encapsulate the code into Classes so you can have clean and robust code 	18 hours
3 Advanced Modern C+ + for Robotics	 How to build C++ programs How to create a library Understand the Standard Template Library (STL) and how it can help you create better code How to use C++ classes to optimize your code Inheritance Function overriding and function overloading How to use pointers and references for optimal memory management Templates and Lambda expressions How to use threads to parallelize tasks in C++ How to deal with unexpected or exceptional errors in your code 	40 hours
4 ROS 2 Basics	 Creation of ROS 2 packages Management of the new Colcon universal building system. Topic Publishers and subscribers in ROS 2 C++. New Launch system based on python Service servers and client generation for ROS 2. Basic use of ROS 1-Bridge to communicate ROS 2 systems with ROS 1 systems. Use of Debbuging tools in ROS 2. 	30 hours
5 URDF for Robot Modeling in ROS 2	 How to build a visual robot model with URDF How to add physical properties to a URDF Model (Collision, Frictions) How to use XACRO to clean up URDF files. 	15 hours

How to use URDF in Gazebo-ROS ecosystem.
How to use URDF-XACRO in ROS 2 systems

MASTERCLASS

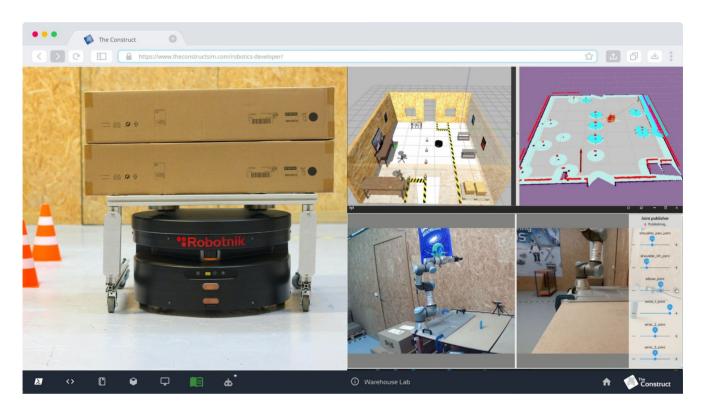
SPRING BATCH · MARCH 2025

WHAT YOU WILL LEARN IN THIS PHASE		TIME
6 TF ROS 2	 How to Visualize TFs in ROS 2 How to Publish & Subscribe to TF data Understanding Transformations & Frames Common TF Command-line Tools (tf_echo, view_frames) Understanding Static Transform Publisher 	15 hours
7 Mastering Gazebo Simulator	 Gazebo GUI How to build a robot for Gazebo How to connect gazebo robots to ROS How to build custom Gazebo worlds How to write plugins for gazebo worlds and models 	20 hours
8 ROS 1 Basics	 Understand key ROS concepts Understand and create your own ROS programs How to debug your ROS programs How to apply theory into real Robotics Challenge and Projects 	23 hours

Phase 2 - Robotics Developer Beginner

200 hours

Understand how to program mobile manipulator skills, including navigation, perception of the environment, and manipulation of objects.


Acquired Skills:

- Advanced ROS 2 concepts
- Robot navigation with ROS 2
- Robot perception with ROS 2
- Object manipulation with ROS 2
- Build robot controllers with ROS 2

Robotics Developer MASTERCLASS SPRING BATCH - MARCH 2025

Project of this phase: Apply what you have learned to the Warehouse Lab and create an entire pick-and-place task with real warehouse collaborative robots: RB1-Base and UR3e Arm.

WHAT YOU WILL LEA	ARN IN THIS PHASE	TIME
9 Intermediate ROS 2	 How to create different types of launch files in ROS 2 How to work with parameters in ROS 2 Threading in ROS 2 How to manage callbacks in ROS 2 Understand Quality of Service (QoS) in ROS 2 Understand DDS in ROS 2 Work with Managed Nodes in ROS 2 	12 hours
10 ROS 2 Navigation	 How to build a map of the environment How to localize a robot in a map of the environment Path Planning from an initial position to the desired goal Obstacle avoidance using Costmaps Navigation Lifecycle Manager How Behavior Trees influence Nav2 	18 hours

roboticsdeveloper.ai

MASTERCLASS

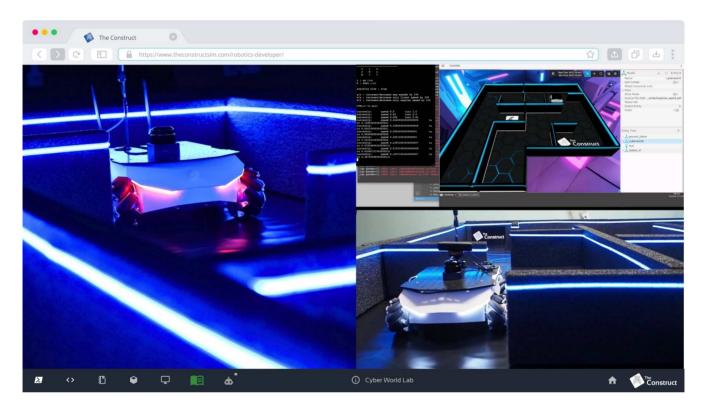
SPRING BATCH · MARCH 2025

	WHAT YOU WILL LEARN IN THIS PHASE		
11	Advanced ROS 2 Navigation	 How to use the Simple Commander API How to use Costmap Filters An explanation of the BT Navigator How to create a custom behavior How to use Groot for visualizing behaviors How plugins are used in Nav2 How to create custom plugins for Nav2 The three main plugins of the controller server 	12 hours
12	ROS 2 Perception and Manipulation	 ROS 2 Moveit ROS 2 Object Detection ROS 2 Programatical Motion Planning 	22 hours
13	ROS 2 Control Framework	 How to configure a ros2_control pipeline How to write a minimal custom interface for a hardware device Real-life implementation of a custom hardware interface Different controller types included with ros2_control Application of the course content to solve a robotics project based on a quadruped robot 	12 hours

Phase 3 - Robotics Developer Experienced

200 hours

Understand any robotic system's physics and mathematical principles, from simple kinematics to advanced planning and control algorithms.


Acquired Skills:

- Essential math for robotics
- Mobile robot kinematics
- Robot arm kinematics
- Robot dynamics
- Kalman filters
- Path planning algorithms

Robotics Developer MASTERCLASS SPRING BATCH - MARCH 2025

Project of this phase: Apply what you have learned to the Cyber World Lab. Design and develop, from zero, the navigation algorithms for a wheeled mobile robot - ROSbot XL.

	WHAT YOU WILL LEARN IN THIS PHASE		
14	Basic Maths for Robotics	 Linear Algebra, where you'll learn about vectors and matrices Calculus, where you'll learn about functions, derivatives, and integrals Probability, where you'll learn about random variables and belief distributions 	12 hours
15	Basic Kinematics of Mobile Robots	 Rigid-Body Motions Kinematics for Non-Holonomic Robots Kinematics for Holonomic Robots Kinematic Control 	18 hours
16	Basic Arm Kinematics	 The baiscs of Rigid Body tranformations The Denavit Hartenberg method for frames generation. Forwards kinematics Inverse Kinematics 	10 hours

MASTERCLASS

SPRING BATCH · MARCH 2025

	WHAT YOU WILL LEARN IN THIS PHASE		
17	Robot Dynamics and Control	 How to solve the dynamics for the motion of rigid bodies in 3D space with the use of Newton's laws of motion How to model the dynamics of a simple robotic system and how to derive its equations of motion How to create a full state feedback controller to allow a robotic system to balance 	12 hours
18	Kalman Filters	 What is a Kalman Filter and why are required Different types of Kalman Filters and when to apply each one. Bayesian Filters One-dimensional Kalman Filters Multivariate Kalman Filters Unscendent Kalman Filters Extended Kalman Filters Particle Filters 	10 hours
19	Path Planning Basics	 Dijkstra algorithm A* search algorithm Rapidly-Exploring Random Tree (RRT) Artificial Potential Fields 	12 hours

Phase 4 - Robotics Developer Competent

200 hours

Understand the development tools for robot programming in a corporate environment. Then, get prepared to bear the day-to-day work of a robotics developer.

Acquired Skills:

- Program web interfaces for ROS 2
- Containerize your software with Docker
- Automate development tasks with Jenkins
- Check the integrity of the code with continuous integration (CI)

MASTERCLASS

SPRING BATCH · MARCH 2025

Project of this phase: You'll receive a real robot box - the TortoiseBot kit, assemble and program it. Your goal in this phase is to develop a ROS-based web app from scratch to control the robot within a containerized environment using continuous integration.

WHAT YOU WILL LEARN IN THIS PHASE

TIME

20 Web Development for Robotics

- Rosbridge: Use the Rosbridge to connect your web pages to ROS
- 20 hours
- HTML5: Learn to build web pages containing the necessary elements to display your desired information. From simple titles and paragraphs to complex table data and forms to collect user's input and process that information
- CSS3: Learn to style your web pages to make them look great
- JavaScript: Learn basic instructions, types, arrays, and objects starting from programming logic.
- ReactJS: Learn to create scalable web applications by providing an organized folder structure and compiler for your web components

roboticsdeveloper.ai

Robotics Developer MASTERCLASS

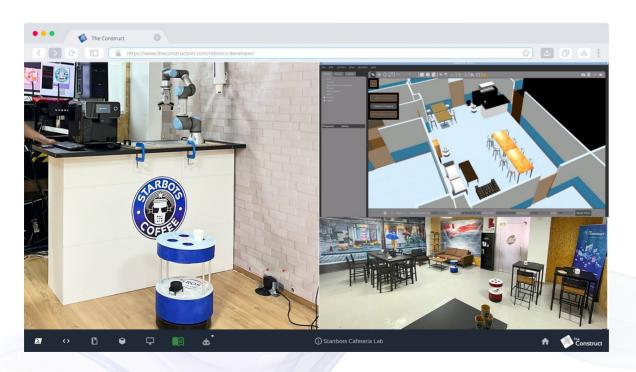
	WHAT YOU WILL LEARN IN THIS PHASE		
21	Developing Web Interfaces for ROS	 Understand how to make ROS data available to other environments Understand how to create simple but efficient web pages How to publish to topics and control robots from the web How to subscribe to topics and monitor ROS data from the web How to work with ROS params from the web How to consume ROS services and action servers from the web Create powerful interfaces that show: 3D models, maps and camera images 	15 hours
22	Docker Basics for Robotics	 Introduction to Docker: How to pulling public images, run and inspect containers, basic commands, etc. Creating Docker Images: Create your own docker image, check its history, and work with Docker containers. Docker Network and Docker Compose: Launch multi containers using a single command and understand docker-compose files. Docker with ROS: Examples of using ROS with Docker. 	12 hours
23	Jenkins Basics for Robotics	 Jenkins installation and initial setup Jenkins jobs Managing Users and Security Jenkins Pipelines Source Code Management Integration Test Integration Jenkins CLI 	12 hours
24	Unit Testing with ROS	 How to create Python Unit Tests How to create ROS Unit Tests How to create ROS Integration Tests	12 hours
25	Continuous Integration	Integrate all the learned DevOps tools into a single practical project	8 hours

MASTERCLASS

SPRING BATCH · MARCH 2025

Phase 5 - Robotics Developer Advanced Final Project

200 hours

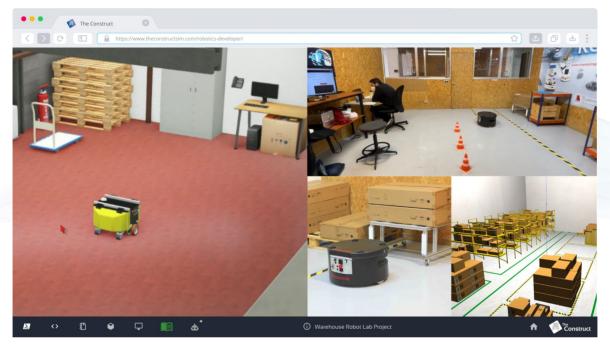

Apply all the skills and knowledge you've gained in a real-world setting. This final project serves as a great opportunity to build your robotics portfolio and showcase your abilities to future employers.

Choose one of the following final project options:

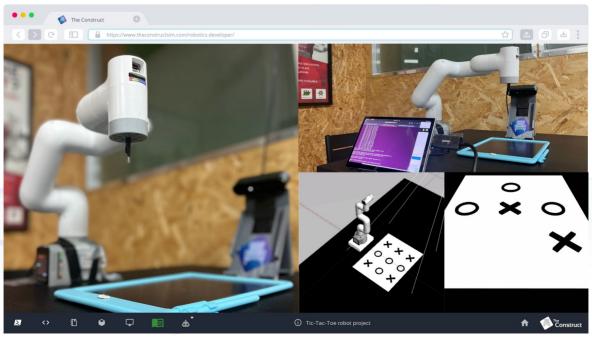
Project Option 1: StarBots Cafeteria Lab

Design, develop, and present a complete robotics project from scratch. Choose between two subprojects:

- **Robotic Arm Project:** Develop a robotic arm app that grabs a coffee cup and places it on another robot for delivery to the tables.
- Mobile Robot Project: Use the TurtleBot 4 robot to clean the tables in the cafeteria.


Robotics Developer SPRING BATCH .

MARCH


Project Option 2: Warehouse Robot Lab

Design, develop, and present a complete robotics project for a small warehouse setting. Use the RB-1 BASE mobile industrial robot to practice applications for warehouse and logistics use cases.

Project Option 3: Tic-Tac-Toe Lab

Design, develop, and present a complete robotics project featuring a Tic-Tac-Toe robot arm.

roboticsdeveloper.ai

MASTERCLASS

SPRING BATCH · MARCH 2025

Phase 6 - Robotics Developer

3 months internship

The Robotics Developer Masterclass offers you a practical internship at a leading robotics company.

Learn from industry practitioners and enhance your knowledge with relevant work assignments to help you prepare for your future career as a robotics developer.

INTERNSHIP PLACEMENTS

After your Masterclass, you'll be placed in an online/on-site internship at one of the world's leading robotics companies. Internships are optional and not required for the certificate.

roboticsdeveloper.ai

MASTERCLASS

SPRING BATCH · MARCH 2025

REAL PRACTICES

Get Hands-on with Robots

Simulated Robots Used

BB-8

IRI Wam arm

Parrot A.R.

TurtleBot2

SUMMIT-XL

Husky

UR3

Fetch

Mira

Phantom X

RB-KAIROS

RRBot

MASTERCLASS

SPRING BATCH · MARCH 2025

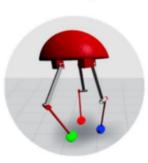
Neobotix MPO-500

3d Version of the Classical 2D TurtleSim

Pi robot

ROSbot 2.0

Mara


TurtleBot 3

Gurdy

JIBO

Motoman Sia10f simulation

Clarkson Open Manipulator

PR2

Shadow hand

M! ...

Real Robots Used

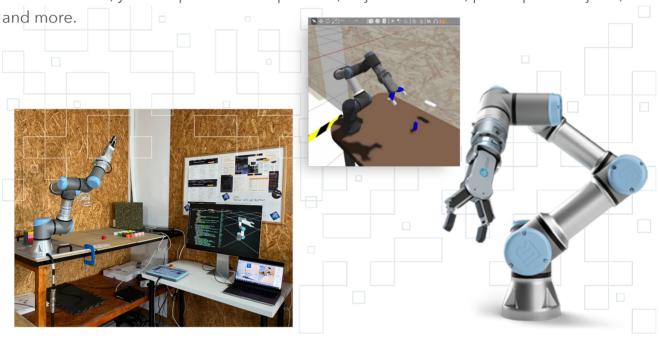
During the program, you will learn robotics and develop robotic apps by connecting remotely to the following real robots to practice:

RB-1 BASE mobile robot - Robotnik

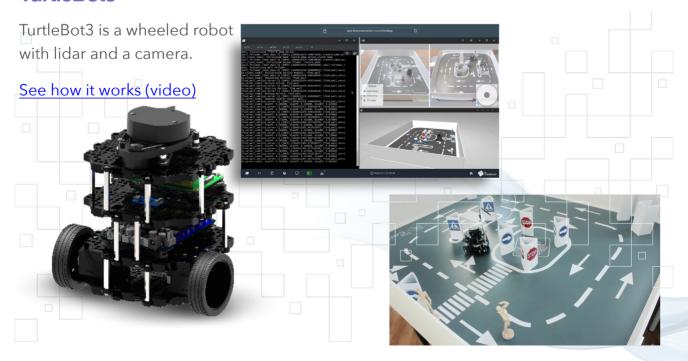
RB-1 BASE is a mobile base robot able to move shelves from one location to another. With this robot, practice autonomous navigation; carrying cargo from one place to another; and recognize environments, like tags, people, or objects.

See how it works (video)

Robotics Developer M A S T E R C L A S S



SPRING BATCH - MARCH 202


UR3e robotic arm

This is a collaborative robotic arm with a gripper and a 3D sensor for perception.

With this robot, you can practice manipulation, object detection, pick & place objects,

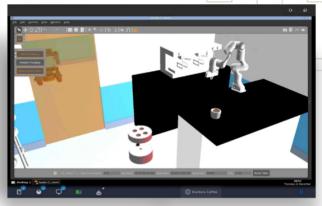
TurtleBot3

MASTERCLASS

SPRING BATCH · MARCH 2025

MASTERCLASS

SPRING BATCH · MARCH 2025



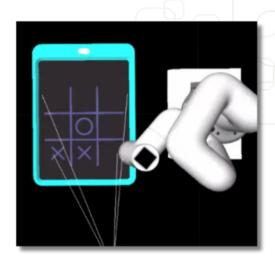
StarBots Cafeteria's Advanced Robot Fleet


Our cutting-edge lineup includes:

- 1. Two coffee delivery mobile robots
- 2. Two table carrier robots
- 3. An UR3e robotic arm, skillfully preparing coffee
- 4. A programmable coffee machine
- 5. An automatic door

MASTERCLASS

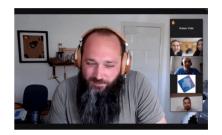
SPRING BATCH · MARCH 2025



Tic-tac-toe robot Lab

In this lab, you will apply manipulation, perception, and AI reasoning to enable a robot to play tic-tac-toe against a human.

You will need to use perception to identify the current board state, reasoning to select the best move for the robot, and then move the robot to draw the circle in the tic-tactoe board.



EXTRA PERKS

Bonus Robotics Workouts


Weekly Talks by Industry Pros

Learn from top-notch experts in ROS/robotics every week. Gain insights from seasoned robotics developers!

Reinforcement C++ Live Class

Boost your C++ programming skills with two live classes per week.

Daily Study Room Sessions

Gain 2+ hours of focused, instructor-led deep work sessions every weekday to strengthen study habits and achieve your goals.

Frequently Asked Questions

What is the difference between this Masterclass and The Construct's existing course library?

The differences are:

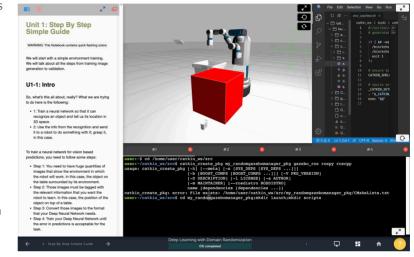
- Comprehensive and fully guided step-by-step path to becoming a Robotics Developer in the shortest amount of time.
- A personal mentor guides and supports your learning development. You have a 1-hour meeting with him monthly.
- Access to exclusive courses required to do professional development in a robotics company:
 - Git for Robotics
 - Docker for Robotics
 - Continuous integration
 - Advanced C++ for Robotics
 - Web programming for robotics
 - Jenkins for robotics
- During the course, you will create several projects, which will be integrated into a shareable online robotics portfolio, showcasing your code and results to potential employers.
- You will receive a TortoiseBot kit, assemble and program it.
- You will practice what you learn in our Remote Real Robot Labs:
 - Beginners city lab, TurtleBot 3 (this one is also available to regular students)
 - Warehouse lab, with an RB-1 Base and a UR3 robot arm
 - Cyberworld, with a ROSbot XL
 - Starbots cafeteria, with two barista robots, one UR3 robot arm, a door, a coffee machine, and a cleaner robot
- You will intern for three months at a leading robotics company.
- Every two weeks, attend a seminar where external professionals share their experience as Robotics Developers.
- Extra live C++ classes
- LinkedIn shareable Robotics Developer certificate

Can I complete the coursework at any time and at my own pace?

Six months is recommended, but you can complete the program at your own pace.

Is there any contract we need to sign before enrolling in the Masterclass?

Before enrolling and paying, we will ask you to sign a Masterclass License Agreement that explains your rights and obligations.


Can I get a scholarship?

Unfortunately, no scholarship is available at this time.

Frequently Asked Questions

Is this Masterclass video-based?

NO. The courses are based on notebooks (as shown in the image below) which contain lectures, exercises, assignments, and exams that will guide you through the program. You can also access the notebooks for review at any time. The courses are also based on regular meetings with your mentor. You will have a mentor assigned to follow your progress. In a monthly session, your mentor will provide feedback on your development, including areas of strength and improvement.

Is the 3-month internship guaranteed upon completion?

The internship is 100% guaranteed for all the students who do the work, study hard, and pass the program. We take charge of providing you with an internship at a robotics company, but we want to send people who have taken the course seriously.

Is the internship paid?

The payment for internships varies based on the company policies. Some companies offer compensation, while others may not. It is important to note that we do not interfere in the company's decision regarding payment.

Where is the internship? Online or offline?

Internships are remote and in-person, depending on your location and other factors. You will discuss and agree on the internship details with your mentor.

Can I choose the internship location?

We will select the best internship opportunity based on your location, skills, and preferences. Then, you will discuss and agree on the internship details with your mentor.

Kickstart Your Career in Robotics Software

Enroll Today

QUESTIONS?

Email: info@theconstruct.ai

Website: roboticsdeveloper.ai

Where Your
Robotics Career
Happens