

BROCHURE

1

Robotics Developer

MASTER CLASS 2023

Learn to Develop Intelligent Robots from Zero

STARTS ON

March 6, 2023

ESTIMATED TIME

6-Month Course + 3-Month Internship FORMAT

Online

Robotics Needs Developers

Overview

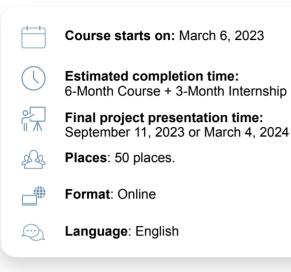
Robots are gradually becoming an essential part of our world. As a result, there is a massive demand for robotics developers to create solutions to everyday problems.

The challenge is that – robotics engineering is a multidisciplinary field and difficult to learn. That's why we've built the **Robotics Developer Master Class – to help you master robotics development from scratch and get you 100% job-ready to work at any robotics company.**

Learning timetable

The syllabus for the Robotics Developer Master Class will comprise a 6month course and a 3-month internship.

The 6-month course requires a weekly commitment of 40 hours of study time. However, you can schedule and complete the program at your own pace over 12 months.


Assessment

During the program, students must complete the exercises and projects in each phase. In the final project, they must apply all knowledge learned and present it to all tutors. Students who pass the final project will receive a certificate.

Students have two opportunities to submit a final project (at the end of 6 months or 12 months). If the student dones't pass within 12 months, a new enrollment will be required.

FUTURE-READY

Prerequisite:

- Linux knowledge. Linux is the base for most professional robotics systems. For that reason, Linux knowledge is a must. <u>Take this free course</u> to learn Linux essentials for robotics.
- **Python 3.** Python allows you to create quick prototypes and test your ideas before going into a production solution. <u>Take this free course</u> to learn Python essentials for robotics.
- **Basic maths**. A minimum high school level math equivalent is a requirement to understand basic robotics concepts. <u>Check out this course</u> to learn essential math concepts for robotics.

CLASS HIGHLIGHTS

Key Takeaways

Learn to **build robot apps** in a real integrated development environment

All courses are based on hands-on exercises & projects

Gain **in-demand robotics skills** in a Fast-growing industry

Walk away with a **robotics portfolio** project to share with potential employers

ACCOMPLISHMENTS

Practice with both **simulated** & real robots

Internship opportunities in robotics companies to apply what you have learned in the real world

Get recognized! This program is graded as pass or fail; students will receive a certificate of completion issued by The Construct after completing the final project and passing the final exam.

MASTER-CLASS

100% Practical

NO videos. NO slides. Learn by DOING with simulated & real robots.

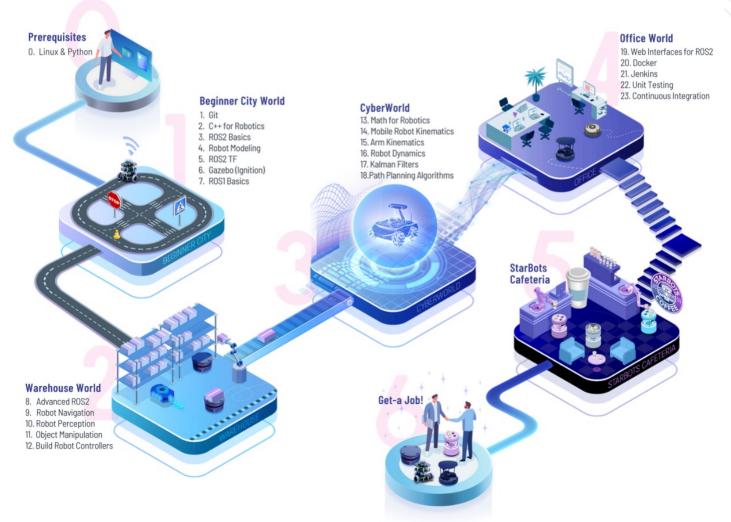
2023

Prerequisites:

Linux, Python, and basic maths. Beginner-Welcome

Personal Mentor

Experienced-in-robotics mentors provide 1-on-1 coaching to guide you.



Flexible Learning

Self-paced, learn on the schedule that works best for you

WE HAVE THE PLAN

Kickstart Your Career in RobDev

MASTER-CLASS 2023

FOLLOW A LEARNING PATH

Program Schedule

Phase 1- Robotics Developer Novice

5 weeks

Build the robot programming foundation and get started with ROS.

Acquired Skills:

- Collaborative software development with Git
- C++ programming skills for robotics
- ROS2 basics
- Robot modeling with URDF ROS2
- Robot frame transformations with TF ROS2
- Create robot simulations with Gazebo (Ignition)
- ROS1 basics

Project of this phase: Apply ROS to the Beginners City Lab and get a real mobile robot – TurtleBot3 to perform specific tasks.

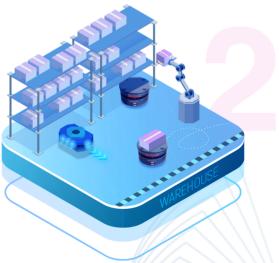
	A app.theconstructsim.com/Desktop	
2	× (1)	0 e - 6 x
<pre>#725 #734 #736 #738 #103 + de]: Initializing /record_dom Action de]: Initializing /record_dom Action de]: Initializing /record_dom Action de]: Initializing /record_dom Action wal.follower.robot main-3] [INF0] [1669212374.41894885 on client.node]: Initialized Action Client: /record_dom mail.follower.robot main-3] [INF0] [1669212374.41894885 de]: Initializing Wall Follower wal.follower.robot main-3] [INF0] [1669212376.920845944 e.client.node]: Initializing Service Request: /find_wall wall.follower.robot main-3] [INF0] [1669212376.920845944 e.client.node]: Service Called: find_wall find_wall.service.server-1] [INF0] [1669212376.93016345944 e.client.node]: Service Called: find_wall find_wall.service.server-1] [INF0] [1669212376.93306316235 be server.node]: Sarting Service: find_wall find_wall.service.server-1] [INF0] [1669212376.933082344 be server.node]: ScanFF: 0.66000, ScanFE: 0.420000, Scan find_wall.service.server-1] [INF0] [1669212376.933082344 be server.node]: ScanFF: 0.65000, ScanFE: 0.420000, Scan find_wall.service.server-1] [INF0] [1669212376.933082344 be server.node]: ScanFF: 0.56000, ScanFE: 0.420000, Scan find_wall.service.server-1] [INF0] [1669212376.933082344 be server.node]: ScanFF: 0.56000, ScanFE: 0.420000, Scan find_wall.service.server-1] [INF0] [1669212376.933082344 be server.node]: ScanFF: 0.56000, ScanFE: 0.420000, Scan find_wall.service.server-1] [INF0] [1669212376.933082344 be server.node]: ScanFF: 0.56000, ScanFE: 0.420000, Scan find_wall.service.server-1] [INF0] [1669212376.933082344 be server.node]: ScanFF: 0.55000, ScanFE: 0.420000, Scan find_wall.service.server-1] [INF0] [1669212376.933082344 be server.node]: ScanFF: 0.56000, ScanFE: 0.420000, Scan find_wall.</pre>	ent_node [record_nodem_act [wall_follower_n [find_wall_servi] [find_wall_servi	
	Beginner City World	n Pconstruct

MASTER-CLASS 2023

	WHAT YOU WILL LEAF	RN IN THIS PHASE	TIME
1	Git and GitHub Basics	Git BasicsGit BranchesGit and GitHub for Team Collaboration	10 hours
2	C++ for Robotics	 How to compile C++ programs How to store data into Variables How to operate with the data in the Variables How to change behavior based on Conditions How to create Functions that can be called from other places of the code How to properly use arrays and pointers How to encapsulate the code into Classes so you can have clean and robust code 	18 hours
3	Advanced Modern C++ for Robotics	 How to build C++ programs How to create a library Understand the Standard Template Library (STL) and how it can help you create better code How to use C++ classes to optimize your code Inheritance Function overriding and function overloading How to use pointers and references for optimal memory management Templates and Lambda expressions How to use threads to parallelize tasks in C++ How to deal with unexpected or exceptional errors in your code 	40 hours
4	ROS2 Basics	 Creation of ROS2 packages Management of the new Colcon universal building system. Topic Publishers and subscribers in ROS2 C++. New Launch system based on python Service servers and client generation for ROS2. Basic use of ROS1-Bridge to communicate ROS2 systems with ROS1 systems. Use of Debbuging tools in ROS2. 	30 hours
5	URDF for Robot Modeling in ROS2	 How to build a visual robot model with URDF How to add physical properties to a URDF Model (Collision, Frictions) How to use XACRO to clean up URDF files. How to use URDF in Gazebo-ROS ecosystem. How to use URDF-XACRO in ROS2 systems 	15 hours

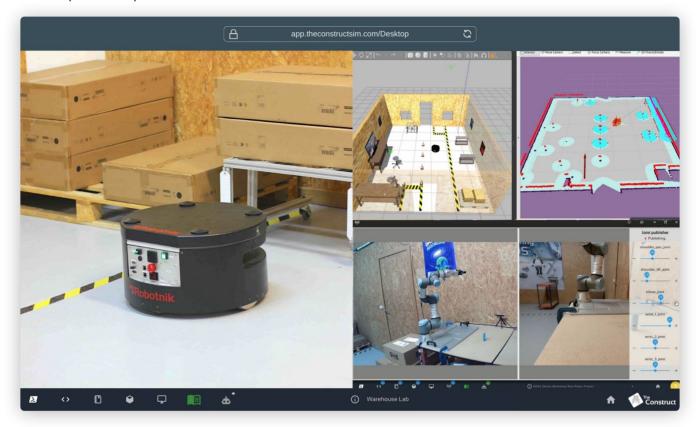
MASTER-CLASS 2023

WHAT YOU WILL LEARN IN THIS PHASE		тіме
TF ROS2	 How to Visualize TFs in ROS2 How to Publish & Subscribe to TF data Understanding Transformations & Frames Common TF Command-line Tools (tf_echo, view_frames) Understanding Static Transform Publisher 	15 hours
Mastering Gazebo Simulator	 Gazebo GUI How to build a robot for Gazebo How to connect gazebo robots to ROS How to build custom Gazebo worlds How to write plugins for gazebo worlds and models 	20 hours
ROS1 Basics	 Understand key ROS concepts Understand and create your own ROS programs How to debug your ROS programs How to apply theory into real Robotics Challenge and Projects. 	23 hours
	TF ROS2 Mastering Gazebo Simulator	TF ROS2• How to Visualize TFs in ROS2 • How to Publish & Subscribe to TF data • Understanding Transformations & Frames • Common TF Command-line Tools (tf_echo, view_frames) • Understanding Static Transform PublisherMastering Gazebo Simulator• Gazebo GUI • How to build a robot for Gazebo • How to connect gazebo robots to ROS • How to build custom Gazebo worlds • How to write plugins for gazebo worlds and modelsROS1 Basics• Understand key ROS concepts


Phase 2- Robotics Developer Beginner

5 weeks

Understand how to program mobile manipulator skills, including navigation, perception of the environment, and manipulation of objects.


Acquired Skills:

- Advanced ROS2 concepts
- Robot navigation with ROS2
- Robot perception with ROS2
- Object manipulation with ROS2
- Build robot controllers with ROS2

MASTER-CLASS 2023

Project of this phase: Apply what you have learned to the Warehouse Lab and create an entire pick-and-place task with real warehouse collaborative robots: RB1-Base and UR3e Arm.

WHAT YOU WILL LE	ARN IN THIS PHASE	TIME
9 Intermediate ROS2	 How to create different types of launch files in ROS2 How to work with parameters in ROS2 Threading in ROS2 How to manage callbacks in ROS2 Understand Quality of Service (QoS) in ROS2 Understand DDS in ROS2 Work with Managed Nodes in ROS2 	12 hours
10 ROS2 Navigation	 How to build a map of the environment How to localize a robot in a map of the environment Path Planning from an initial position to the desired goal Obstacle avoidance using Costmaps Navigation Lifecycle Manager How Behavior Trees influence Nav2 	18 hours

MASTER-CLASS 2023

WHAT YOU WILL LEARN IN THIS PHASE

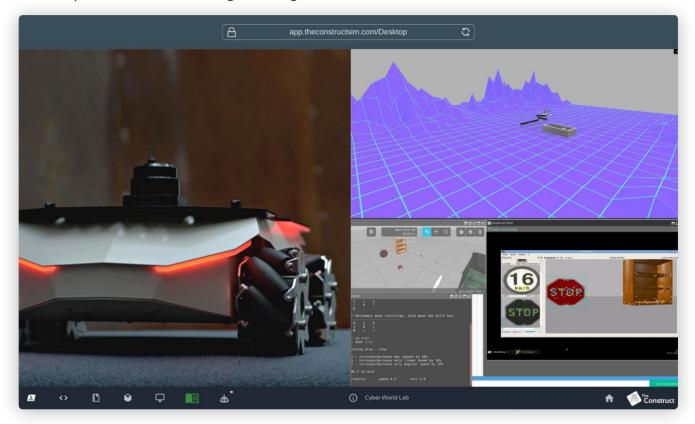
ТІМЕ

11 Advanced ROS2 Navigation	 How to use the Simple Commander API How to use Costmap Filters An explanation of the BT Navigator How to create a custom behavior How to use Groot for visualizing behaviors How plugins are used in Nav2 How to create custom plugins for Nav2 The three main plugins of the controller server 	12 hours
12 ROS2 Perception and Manipulation	 ROS2 Moveit ROS2 Object Detection ROS2 Programatical Motion Planning 	22 hours
13 ROS2 Control Framework	 How to configure a ros2_control pipeline How to write a minimal custom interface for a hardware device Real-life implementation of a custom hardware interface Different controller types included with ros2_control Application of the course content to solve a robotics project based on a quadruped robot 	12 hours

Phase 3 - Robotics Developer Experienced

5 weeks

Understand any robotic system's physics and mathematical principles, from simple kinematics to advanced planning and control algorithms.


Acquired Skills:

- Essential math for robotics
- Mobile robot kinematics
- Robot arm kinematics
- Robot dynamics
- Kalman filters
- Path planning algorithms

Project of this phase: Apply what you have learned to the Cyber World Lab. Design and develop, from zero, the navigation algorithms for a wheeled mobile robot – ROSbot XL.

	WHAT YOU WILL LEAI	RN IN THIS PHASE	ТІМЕ
14	Basic Maths for Robotics	 Linear Algebra, where you'll learn about vectors and matrices Calculus, where you'll learn about functions, derivatives, and integrals Probability, where you'll learn about random variables and belief distributions 	12 hours
15	Basic Kinematics of Mobile Robots	 Rigid-Body Motions Kinematics for Non-Holonomic Robots Kinematics for Holonomic Robots Kinematic Control 	18 hours
16	Basic Arm Kinematics	 The baiscs of Rigid Body tranformations The Denavit Hartenberg method for frames generation. Forwards kinematics Inverse Kinematics 	10 hours

MASTER-CLASS 2023

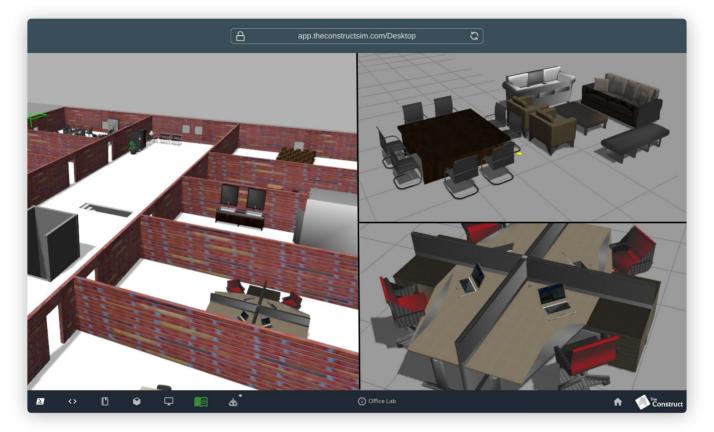
AT YOU WILL LEARN IN THIS PHASE

17	Robot Dynamics and Control	 How to solve the dynamics for the motion of rigid bodies in 3D space with the use of Newton's laws of motion How to model the dynamics of a simple robotic system and how to derive its equations of motion How to create a full state feedback controller to allow a robotic system to balance 	12 hours
18	Kalman Filters	 What is a Kalman Filter and why are required Different types of Kalman Filters and when to apply each one. Bayesian Filters One-dimensional Kalman Filters Multivariate Kalman Filters Unscendent Kalman Filters Extended Kalman Filters Particle Filters 	10 hours
19	Path Planning Basics	 Dijkstra algorithm A* search algorithm Rapidly-Exploring Random Tree (RRT) Artificial Potential Fields 	12 hours

Phase 4 - Robotics Developer Competent

5 weeks

Understand the development tools for robot programming in a corporate environment. Then, get prepared to bear the day-to-day work of a robotics developer.


Acquired Skills:

- Program web interfaces for ROS2
- Containerize your software with Docker
- Automate development tasks with Jenkins
- Check the integrity of the code with continuous integration (CI)

TIME

Project of this phase: Apply what you have learned to the Office Lab. Develop a ROSbased web application from zero that provides a graphical interface to command a robot, in a containerized environment with continuous integration.

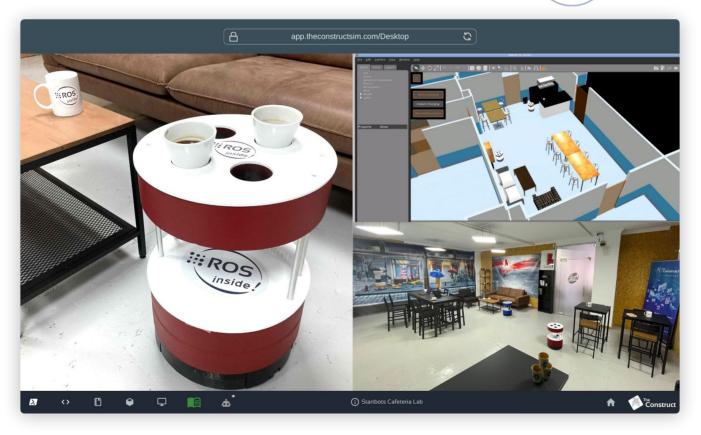
	WHAT YOU WILL LEAF	RN IN THIS PHASE	тіме
20	Web Development for Robotics	 Rosbridge: Use the Rosbridge to connect your web pages to ROS HTML5: Learn to build web pages containing the necessary elements to display your desired information. From simple titles and paragraphs to complex table data and forms to collect user's input and process that information CSS3: Learn to style your web pages to make them look great JavaScript: Learn basic instructions, types, arrays, and objects starting from programming logic. ReactJS: Learn to create scalable web applications by providing an organized folder structure and compiler for your web components 	20 hours

2023

MASTER-CLASS

WHAT YOU WILL LEARN IN THIS PHASE TIME • Understand how to make ROS data available to other 21 Developing Web 15 hours Interfaces for ROS environments • Understand how to create simple but efficient web pages • How to publish to topics and control robots from the web • How to subscribe to topics and monitor ROS data from the web • How to work with ROS params from the web • How to consume ROS services and action servers from the web • Create powerful interfaces that show: 3D models, maps and camera images 22 Docker Basics for • Introduction to Docker: How to pulling public images, run 12 hours **Robotics** and inspect containers, basic commands, etc. • Creating Docker Images: Create your own docker image, check its history, and work with Docker containers. • Docker Network and Docker Compose: Launch multi containers using a single command and understand dockercompose files. • Docker with ROS: Examples of using ROS with Docker. 23 Jenkins Basics for 12 hours • Jenkins installation and initial setup **Robotics** Jenkins jobs • Managing Users and Security • Jenkins Pipelines • Source Code Management Integration Test Integration Jenkins CLI 24 Unit Testing with ROS • How to create Python Unit Tests 12 hours • How to create ROS Unit Tests • How to create ROS Integration Tests **25** Continuous Integration Integrate all the learned DevOps tools into a single practical 8 hours project

MASTER-CLASS 2023


Phase 5 - Robotics Developer Advanced

4 weeks

Put all your skills and knowledge to the test in a realworld scenario.

Design, develop and present, from zero, a complete robotics project for the StarBots Cafeteria Lab - Get robots to prepare a coffee, deliver coffee to the tables, and clean the space while maintaining the battery level.

MASTER-CLASS 2023

Phase 6 - Robotics Developer

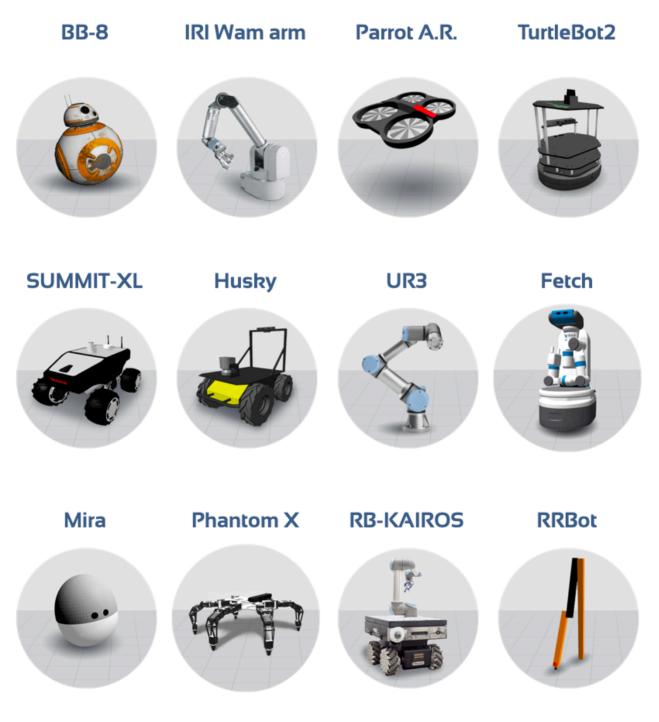
3 months internship

The Robotics Developer Master Class offers you a practical internship in one of the world's leading robotics companies. You will learn from industry practitioners, and enhance your knowledge with relevant work assignments that can help you prepare for your future career as a real robotics developer.

WORK PLACEMENTS

The Robotics Developer Master Class includes an external placement. The External Placement Programme (PPE) matches supply and demand for places to enable students to gain professional experience in the sector and put their knowledge of robotics development into practice.

The Construct has framework collaboration agreements in place with the following world's leading robotics companies to advance in the training of robotics professionals:



REAL PRACTICES

Get Hands-on with Robots

Simulated Robots Used

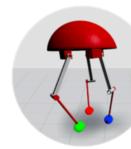
MASTER-CLASS 2023

Neobotix **MPO-500** **3d Version of** the Classical 2D TurtleSim

Pi robot

ROSbot 2.0

TurtleBot 3


Gurdy

JIBO

Motoman Sia10f simulation

Clarkson Open

PR2

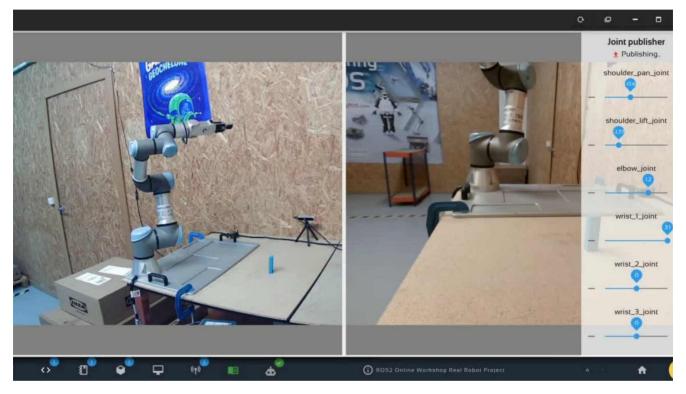
Shadow hand

Real Robots Used

During the program, you will learn robotics and develop robotic apps by connecting remotely to the following real robots to practice:

RB-1 BASE mobile robot - Robotnik

RB-1 BASE is a mobile base robot able to move shelves from one location to another. With this robot, practice autonomous navigation; carrying cargo from one place to another; and recognize environments, like tags, people, or objects.

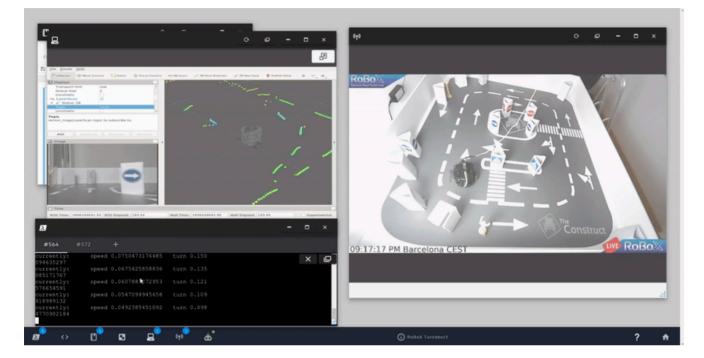

See how it works (video).

MASTER-CLASS 2023

UR3e robotic arm

This is a collaborative robotic arm with a gripper and a 3D sensor for perception. With this robot, you can practice manipulation, object detection, pick & place objects, and more.

ROSbot XL - Husarion


ROSbot XL is a 4x4 drive autonomous mobile robot platform equipped with LIDAR, RGB-D camera, IMU, encoders, etc. Powered by ROS / ROS2.

TurtleBot3

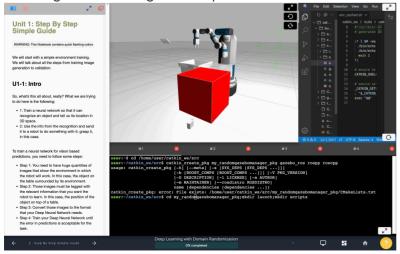
TurtleBot3 is a wheeled robot with lidar and a camera.

Rick & Morty

Two robot baristas working in StarBots Cafeteria.

MASTER-CLASS 2023

Frequently Asked Questions


What is the difference between this Master Class and The Construct's existing course library?

- A personal mentor guides and supports your Robotics Programming learning development. We provide all you require to graduate from the Master Class as a subject expert.
- Access to exclusive courses:
 - Docker for Robotics
 - Advanced C++ for Robotics
 - Gazebo robot simulations
 - Web programming for robotics
 - Jenkins for robotics
- During the course, you will create several projects, which will be integrated into a shareable online robotics portfolio, showcasing your code and results to potential employers.
- You will practice what you learn in our Remote Real Robot Labs.
- You will intern at a leading robotics company.
- We will teach you how to use software development tools required for robotics programming jobs (i.e., Docker, Git, Jenkins, and more).
- The Master Class projects are entirely different, specialized, and more comprehensive. They take into account the whole MasterClass program. MasterClass students will also have exclusive access to our Remote Real Robot Labs.
- Attend seminars and talks by highly regarded external professionals.

Is this Master Class video-based?

NO. The courses are based on notebooks (as shown in the image below) which contain lectures, exercises, assignments, and exams that will guide you through the program. You can also access the notebooks for review at any time.

The courses are also based on regular meetings with your mentor. You will have a mentor assigned to follow your progress. In a monthly session, your mentor will provide feedback on your development, including areas of strength and improvement.

MASTER-CLASS 2023

Frequently Asked Questions

Can I complete the coursework at any time and at my own pace?

Yes, 6 months is the best time we recommend for completion, but you can complete the program at your own pace over 12 months.

Is the 3-month internship guaranteed upon completion?

The internship is 100% guaranteed for all the students who do the work, study hard, and pass the program. We take charge of providing you with an internship at a robotics company, but we want to send people who have taken the course seriously.

Where is the internship? Online or offline?

Internships are remote and in-person, depending on your location and other factors. You will discuss and agree on the internship details with your mentor.

Can I choose the internship location?

We will select the best internship opportunity based on your location, skills, and preferences. Then, you will discuss and agree on the internship details with your mentor.

Is there any contract we need to sign before enrolling in the Master Class?

Yes, we will ask you to sign a simple contract explaining your rights and obligations.

Can I get a scholarship?

There is no scholarship available.

Can I pay in installments?

Yes. You can now register for the "Robotics Developer Master-Class" by paying in 12 installments. €700 EUR per month (The total tuition fee is €8400 EUR).

Kickstart Your Career in Robotics Software

P

Enroll Today

QUESTIONS?

Email: info@theconstructsim.com

Website: https:// www.theconstructsim.com/robotics- developer/

What do the robots of the future look like?

...it all depends on you.

