
1 www.theconstructsim.com

https://bit.ly/35LyvCx

Written by Ricardo Tellez, ROS teacher at Master of Industry 4.0, Technical University
of Catalonia, Spain

Cover design by Lorena Guevara

Infographics by Yuhong Lin and Lorena Guevara

Copyright of The Construct Sim Ltd. 2021 

2 www.theconstructsim.com

https://bit.ly/35LyvCx

Introduction 4 ..

We need you!	 4 ...
Why not enough GOOD developers for robotics?	 5 ...
What is the robot ROS API?	 6 ...
What is ROS anyway?	 7 ...
A history of ROS	 7 ...
ROS for service robots	 14 ...
ROS for industrial robots	 14 ...
ROS for agricultural robots	 15 ..
How to develop for robots with ROS	 15 ..

CHAPTER 1: Pre-requisites 16 ...

Why Linux?	 16 ...
Should I learn Python or C++ ?	 17 ..
Should I learn ROS1 or ROS2	 21 ..

CHAPTER 2: Setting Up a ROS2 development environment 23

Using the ROS Development Studio	 23 ..
Installing ROS2 in your machine	 25 ..

CHAPTER 3: Learning ROS2 28 ..

Five methods to learn ROS2	 28 ..
How to ask questions	 34 ...
Conclusion	 34 ..

CHAPTER 4: Coding in ROS2 36 ...

Cloud IDEs	 36 ...
Local IDEs	 37 ...

CHAPTER 5: Testing 39 ...

Levels of testing	 40 ...
Creating tests of levels 1,2 and 3	 41 ...
Creating tests of level 4	 42 ...
Debugging	 44 ...

CHAPTER 6: List of ROS2 robots to practice with 45 ..

CHAPTER 7: Additional learning 49 ...

Appendix 50...

3 www.theconstructsim.com

https://bit.ly/35LyvCx

I N T R O D U C T I O N

If you are reading this is because you are tired of not having the robots promised on the
movies. Where are our robot companions? Where are the robots that do all the hard work
for us? Where are the robots that take the difficult and dangerous tasks for us?

Nowhere!

We are tired of those fake robots that fool journalists and the general public, looking like
they understand everything, when the reality is that they understand nothing at all. Those
are just bullshit robots!

What is happening here? Why don’t we have useful autonomous robots yet?

The bottleneck that is preventing us from having clever robots is in the robot software.
Robot hardware is already good enough to perform many of the tasks we would like a robot
to do for us, like cleaning a room or preparing the meals, build a car from start to end,
harvest the fields, or explore the spaces of Mars. Robotics hardware is already ready to do all
those things.

The problem is the software: there is no software for robots that allows them to do any of
those tasks autonomously. What can we do?!?!

W E N E E D YO U !

And here is where you get into the picture. There are not enough good robotics
programmers (also called robotics developers).

The robots of the future are waiting for good robotics developers, they are waiting for you!

We need audacious software engineers that master programming robots with novel and
intelligent algorithms. Beyond a conceptual or theoretical algorithm, we need developers
that bring those ideas into reality. We need modern developers that master programming at
the highest level… are you in?

If you are, keep reading this guide. Here we are going to give you the steps you need to
become…

…the first robotics developer that will build a conscious robot!

4 www.theconstructsim.com

https://bit.ly/35LyvCx

W H Y N O T E N O U G H G O O D D E V E L O P E R S F O R
R O B O T I C S ?

In general, software developers do not like to deal with the hardware.

It is very likely that you are a good software developer and never thought about entering in
the robotics field. You probably think that by programming for robots you would need to
know about electronics and may be even mechanics. You probably think that hardware and
software are too much coupled in robots that you cannot touch one thing without touching
the other. And sometimes, it is…

Some years ago, we had to develop the navigation system for a robot. However, our
navigation program was not working at all. We thought that it was something wrong with
the program, but after extensive review and test in simulations, we found that it actually
was a problem with the electronics of the laser scanner that we used to localize the robot.
There were some micro-interruptions in the voltage level that made the laser reboot. In
order to find that error, we had to go to the basics and find where the problem within the
physical laser was. For that we needed to mess with the electronics. We had to take the laser
out from the robot, put it on the table and start doing experiments. Different voltages,
different interruptions to the power, in order to try to reproduce the effect in a controlled
environment. That is a lot of interaction with the hardware.

That interaction with the hardware is something that many software developers don’t like.
After all, they decided to become software developers, not hardware ones!!

So, if we want good software developers to program robots, we need to provide two things:

1. A framework to abstract the hardware of the robot to the software developer

2. This framework must be quite common among robots. Otherwise we would need to
learn a different framework for each type of robot.

Fortunately, we already have this framework, and it is called ROS.

Thanks to the Robot Operating System, ROS, you can abstract completely the hardware
from the software in most of the cases, so you can program a robot just by knowing the
robot ROS API and having a simulation of the robot for testing purposes. By using the ROS
API, you can forget about the hardware and just concentrate on the software that makes the
robot do what you want.

5 www.theconstructsim.com

https://bit.ly/35LyvCx

Also, the framework is so well designed and distributed that it is becoming the standard in
robotics programming. This allows us to re-use code from one robot to another, preventing
us from having to re-invent the wheel continuously.

W H AT I S T H E R O B O T R O S A P I ?

The ROS API is the list of ROS topics, services, action servers and messages that a given
robot is providing to give access to its hardware, that is, sensors and actuators in a standard
way.

If you are not familiar with ROS, you may not understand what those terms mean. But
simply put in the developers language, topics/services/messages are like the software
functions you can call on a robot to get data from the sensors or make the robot take an
action. It also includes the parameters you can pass to those functions.

Most modern robot builders are providing off-the-shelf ROS APIs, like for example ROS-
Components shop (http://www.roscomponents.com) that provides all their robot hardware
running with a ROS API.

If the robot you want to work with does not run ROS you can make it work by ROSifying it.
To ROSify means to adapt your robot to work with ROS, so you provide its ROS API. To
ROSify a robot usually requires knowledge to access the hardware. You need to learn how to
communicate with the electronics that provide the sensor data or access the motors of the

6 www.theconstructsim.com

http://www.roscomponents.com
https://bit.ly/35LyvCx

robot. In this book, we are not dealing with that subject because it gets out of scope for
developers. We assume you have somebody else doing this job for you.

So for the rest of the book, we will assume that you have access (or willing to have) to a
robot that is already ROSified. That is actually the trend in robotics.

W H AT I S R O S A N Y WAY ?

ROS stands for Robot Operating System (http://www.ros.org). Even if it says so, ROS is not
a real operating system since it goes on top of Linux Ubuntu (also on top of Mac, and
recently, on top of Windows). ROS is a framework on top of the O.S. that allows to abstract
the hardware from the software. This means, you can think in terms of software for all the
hardware of the robot. And that are good news for you because this implies that you can
actually create programs for robots without having to deal with the hardware. Yeah!

ROS works on Linux Ubuntu or Linux Debian. Experimental support already exists for OSX,
Gentoo and Windows, but we really don’t recommend you to use them yet unless you are
and expert. Check this page (https://tinyurl.com/y6z36nru) for more information about
how to use ROS on those systems.

A H I S T O RY O F R O S

Let us introduce you with a short history of how ROS started, the main reasons behind it,
and its current status.

The Stanford Period

ROS started as a personal project of Keenan Wyrobek and Eric Berger while at Stanford, as
an attempt to remove the reinventing the wheel situation from which robotics was suffering.
Those two guys were worried about the most common problem of robotics at the time:

• too much time dedicated to re-implementing the software infrastructure required
to build complex robotics algorithms (basically, drivers to the sensors and actuators,
and communications between different programs inside the same robot)

• too little time dedicated to actually building intelligent robotics programs that
were based on that infrastructure.

Even inside the same organization, the re-invention of the drivers and communication
systems was re-implemented for each new project. This situation was beautifully expressed
by Keenan and Eric in one of their slides used to pitch investors.

Most of the time spent in robotics was reinventing the wheel (slide from Eric and Keenan pitch deck)

7 www.theconstructsim.com

https://bit.ly/35LyvCx
http://www.ros.org
https://tinyurl.com/y6z36nru
https://www.linkedin.com/in/keenanwyrobek/
https://en.wikipedia.org/w/index.php?title=Eric_Berger_(engineer)&action=edit&redlink=1

In order to attack that problem, Eric and Keenan created in 2006 a program at Stanford
called the Stanford Personal Robotics Program, with the aim to build a framework that
allowed processes to communicate with each other, plus some tools to help create code on
top of that. All that framework was supposed to be used to create code for a robot they also
would build, the Personal Robot, as a testbed and example to others. They would build 10
of those robots and provide them to universities so that they could develop software based
on their framework.

NOTE: People more versed in ROS will recognize in those the precursors of ROS-comm
libraries and the Rviz, rqt_tools and the like of current modern ROS distributions. Also, the
Personal Robot was the precursor of the famous PR2 robot.

PR1 robot, picture by IEEE Spectrum

Similar frameworks at the time

The idea of such a system for robotics was not new. Actually, there were some other related
projects already available for the robotics community, Player/Stage, one of the most
famous in the line of open source, and URBI in the line of proprietary systems. Even Open-

8 www.theconstructsim.com

https://bit.ly/35LyvCx
http://personalrobotics.stanford.edu/
https://en.wikipedia.org/wiki/Player_Project
https://github.com/urbiforge/urbi
https://www.sony.net/SonyInfo/News/Press_Archive/200205/02-017E/

R, the system developed by Sony which powered the early Aibo robots of 1999, was a
system created to prevent that problem (a shame that Sony canceled that project, as they
could have become the leaders by now. Ironically, in 2019, Sony launched a new version of
the Aibo robot… which runs ROS inside!). Finally, another similar system developed in
Europe was YARP.

Actually, one of the leaders of the Player/Stage research project was Brian Gerkey, who later
went to Willow Garage to develop ROS, and is now the CEO of Open Robotics, the
company behind the development of ROS at present. On its side, URBI was a professional
system led by Jean-Christoph Baillie, which worked very well, but could not compete with
the free-ness of ROS.

That is an important point to discuss: URBI was (at least) as good as ROS. I used it for
many research tasks while doing my Ph.D., for example, this code about making Aibo robot
walk using neural networks (in 2005!), and making Aibo dance, and do some other tricks.
But URBI failed when competing with ROS. URBI had as many tools for debugging, and as
much documentation as ROS. So, why is it that URBI failed against ROS?

The fastest readers will jump to the point that URBI was not free. Actually, it was quite
expensive. Was the price what killed URBI? I don’t think so. In my opinion, what killed
URBI was the lack of community. It takes some time to build a community, but once you
have it, it acts like changing gears. URBI could not build a community because it relied on

9 www.theconstructsim.com

https://bit.ly/35LyvCx
https://www.sony.net/SonyInfo/News/Press_Archive/200205/02-017E/
https://www.yarp.it/
https://www.linkedin.com/in/jcbaillie/
http://www.ouroboros.org/aibo.html
http://www.ouroboros.org/aibo.html
http://www.ouroboros.org/aibo.html

an (expensive) paid fee. That made it so that only people that could buy it were accessing
the framework. That limits the amount of community you can create. It is true that ROS
was free. But that is not the reason (many products that are free fail). The reason is that
they built a community. Being free was just a strategy to build that community.

Switching gears

While at Stanford, Keenan and Eric received a $50k funding and used it to build a PR robot
and a demo of what their actual project was. However, they realized that in order to build a
really universal system and to provide those robots to the research groups, they would need
additional funding. So they started to pitch investors.

At some point around 2008, Keenan and Eric met with Scott Hassan, investor and the
founder of Willow Garage, a research center with a focus on robotics products. Scott found
their idea so interesting that he decided to fund it and start a Personal Robotics Program
inside Willow Garage with them. The Robot Operating System was born and the PR2 robot
with it. Actually, the ROS project became so important that all the other projects of Willow
Garage were discarded and Willow Garage concentrated only on the development and spread
of ROS.

Willow Garage takes the lead

ROS was developed at Willow Garage for around 6 years, until Willow shut down, back in
2014. During that time, many advancements in the project were made. It was this push
during the Willow time that skyrocketed its popularity. It was also during that time that I
acknowledged its existence (I started with ROS C-turtle in 2010) and decided to switch
from Player/Stage (the framework I was using at that time) to ROS, even if I was in love
with Player/Stage (I don’t miss you because ROS is so much better in all aspects… sorry,
Player/Stage, it is not me, it is you).

In 2009, the first distribution of ROS was released: ROS Mango Tango, also called ROS
0.4. As you can see, the name of the first release had nothing to do with the current naming
convention (for unknown reasons to this author). The release 1.0 of that distribution was
launched almost a year later in 2010. From that point, the ROS team decided to name of the
distributions after turtle types. Hence, the following distributions and release dates were
done:

• Box Turtle, in 2010
• ROS C-Turtle, in 2010
• Diamond Back, in 2011
• ROS Electric Emys, in 2011
• ROS Fuerte Turtle, in 2012
• ROS Groovy Galapagos, in 2012

1 0 www.theconstructsim.com

https://www.linkedin.com/in/scott-hassan-7b48b/
https://www.willowgarage.com/
http://www.willowgarage.com/blog/2009/02/10/ros-04-release
http://www.willowgarage.com/blog/2010/03/02/ros-distributions-box-turtle-release
http://www.willowgarage.com/blog/2010/08/03/ros-c-turtle-release
http://www.willowgarage.com/blog/2011/03/02/ros-diamondback-launch
http://wiki.ros.org/electric
http://wiki.ros.org/fuerte
http://wiki.ros.org/groovy
https://bit.ly/35LyvCx

Around that time, other even also happened:

1. In 2009, they built a second version of the Personal Robot, the PR2
2. In 2010, they launched ROS Answers, the channel to answer technical questions about

ROS.
3. The first edition of the ROSCON was in 2012. The ROSCON became the official yearly

conference for ROS developers.
4. In 2010, they built 11 PR2 robots and provided them to 11 universities for robotics

software development using ROS (as the original idea of Eric and Keenan). At that
point, the PR2 robot was for sale, so anybody in the world could buy one (if enough
money was available ;-)).

5. In 2011, as robot simulations started to become very important, the team decided to
incorporate Gazebo, the 3D robotics simulator from the Player/Stage project, into ROS.
Gazebo became the default 3D simulator for ROS.

As ROS was evolving, all the metrics of ROS were skyrocketing. The number of repositories,
the number of packages provided, and of course, the number of universities using it and of
companies putting it into their products.

Evolution of ROS in the early days (picture from Willow Garage)

Another important event that increased the size of the ROS community was that, in 2011
Willow Garage announced the release of Turtlebot robot, the most famous robot for
ROS developers. Even if PR2 was the intended robot for testing and developing with ROS,
its complexity and high price made it non-viable for most researchers. Instead, the Turtlebot
was a simple and cheap robot that allowed anybody to experiment with the basics of
robotics and ROS. It quickly became a big hit, and is used even today, in its Turtlebot2 and
Turtlebot 3 versions.

In 2013, Willow Garage ‘announced’ that the company would dissolve that year.

1 1 www.theconstructsim.com

http://www.willowgarage.com/blog/2011/04/18/turtlebots-available-preorder
https://spectrum.ieee.org/automaton/robotics/robotics-software/willow-garage-to-shut-down
https://bit.ly/35LyvCx

I remember when we received the news that Willow Garage was closing. I was working at
that time at Pal Robotics. We at Pal Robotics were all very worried. What would happen
with ROS? After all, we had changed a lot of our code to be working with ROS. We removed
previous libraries like Karto for navigation (Karto is software for robot navigation, which at
present is free, but at that time, we had to pay for a license to use it as the main SLAM and
path planning algorithms of our robots).

The idea was that the newly created Open Source Robotics Foundation would take the lead
of ROS development. And many of the employees were absorbed by Suitable Technologies
(one of the spin-offs created from Willow Garage, which ironically does not use ROS for
their products ;-)). The customer support for all the PR2 robots was absorbed by another
important company, Clearpath Robotics.

Under the Open Source Robotics Foundation umbrella

Under the new legal structure of the OSRF, ROS continued to develop and release new
distributions.

• ROS Hydro Medusa, in 2013
• ROS Indigo Igloo, in 2014
• ROS Jade Turtle, in 2015
• ROS Kinetic Kame, in 2016
• ROS Lunar Loggerhead, in 2017
• ROS Melodic Morenia, in 2018
• ROS Noetic, in 2020

The reports created after each year are publicly available here under the tag ROS Metrics.

Having reached this point, it is important to state that the last and final distribution of
ROS1 was released in 2020. It is called ROS Noetic, and it is based on Python 3, instead of
Python 2 as all the previous ones were. From that date, no more ROS1 distributions will be
released, and the full development will be directed to ROS2 development.

But wait a second, what is ROS2?

ROS 2.0

Around 2015, the deficiencies of ROS for commercial products were manifesting very
clearly. Single point of failure (the roscore), lack of security, and no real-time support
were some of the main deficiencies that companies argued for not supporting ROS in their
products. However, it was clear that, if ROS had to become the standard for robotics, it had
to reach the industrial sector with a stronger voice than that of the few pioneer companies
already shipping ROS in their products.

1 2 www.theconstructsim.com

http://wiki.ros.org/hydro
http://wiki.ros.org/indigo
http://wiki.ros.org/jade
http://wiki.ros.org/kinetic
http://wiki.ros.org/lunar
http://wiki.ros.org/melodic
http://wiki.ros.org/noetic
http://wiki.ros.org/Metrics
https://bit.ly/35LyvCx

In order to overcome that point, the OSRF took the effort to create ROS 2.0, a complete
rewriting of ROS1 with solutions for all those problems in mind.

ROS 2.0, even if still not fully at the same level as ROS1, it has already reached its sixth
distribution in May 2021 with the release of Galactic Geochelone. This means that it is
becoming mature to be used in many applications.

For instace, ROS2 is used in Apex.OS for the operating system of autonomous cars.
Apex.OS has been adopted by Toyota for their line of autonomous cars.

Recent movements in the ROS ecosystem

• In 2017, the Open Source Robotics Foundation changed its name to Open Robotics, in
order to become more of a company than a foundation, even if the foundation branch
still exists (some explanation about it can be found in this post and in this interview of
Tully Foote).

• Recently, Open Robotics has opened a new facility in Singapore and established a
collaboration with the government there for development. As far as I know, they are
working to apply ROS2 to control robots inside a hospital.

• Local ROS conferences have been launched:
◦ ROSCON France
◦ ROSCON Japan

1 3 www.theconstructsim.com

https://www.osrfoundation.org/welcome-to-open-robotics/
https://www.theconstructsim.com/rdp042-ros-developed-ros-platform-manager-tully-foote/
https://www.theconstructsim.com/rdp042-ros-developed-ros-platform-manager-tully-foote/
https://bit.ly/35LyvCx

• In the last couple of years, big players like Amazon, Google, and Microsoft have started
to show interest in the system, and show support for ROS.

• New versions of ROS2 for other architectures have been created like ARM u-controllers

That is definitely a sign that ROS is in good health (I would say in better health than ever)
and that it has a bright future in front of it. Sure, many problems will arise, but I’m 100%
sure that we, and by we I mean the whole ROS community, will solve them and build on top
of them.

R O S F O R S E R V I C E R O B O T S

ROS is becoming the standard in robotics programming, at least in the service robots sector.
Initially, ROS started at the Universities and was mainly used for research, but now it is
quickly spreading into the companies world. Every day more and more companies and
startups are basing their business in ROS (check this article about the top ten robotics
companies based on ROS: https://tinyurl.com/y37upbj6).

Before ROS, every robot had to be programmed using the manufacturer’s own API. This
means that if you changed to another robot, you had to start the whole software again, apart
from having to learn the new API. Furthermore, you had to know a lot about how to interact
with the electronics of the robot in order to understand how your program was doing. The
situation was like with the computers in the 80s when every computer had its own
operating system and you had to create the same program for every type of computer. ROS
is for robots like Windows is for PCs or Android for the phones.

By having a ROSified robot, that is, a robot that runs on ROS, you can create programs that
can be shared among different robots. You can build a navigation program, that is a program
to make a robot move around without colliding, for a four wheels robot built by company A
and then use the same exact code to move a two wheels robot built by company B… or even
use it on a drone from company C with minor modifications.

R O S F O R I N D U S T R I A L R O B O T S

ROS is being used in many of the service robots that are created at present. On the other
side, industrial robotics companies are still not completely convinced about using it, mainly
because they will loose the power of having a proprietary system. However, four years ago
an international group called ROS-Industrial (https://rosindustrial.org/) was created whose
aim is to make industrial manufacturers of robots, understand the good chance that ROS is

1 4 www.theconstructsim.com

https://bit.ly/35LyvCx
https://tinyurl.com/y37upbj6
https://rosindustrial.org/

for them, since they will be able to use off the shelf all the software that other people has
created for other ROS robots.

I made a very interesting interview to Jorge Nicho about building hybrid ROS1 & ROS2
applications for industrial robots. I recommend you to listed to it for getting an idea of the
possibilities we have of ROS for industrial robots.

R O S F O R A G R I C U LT U R A L R O B O T S

On the same line as ROS-Industrial, ROS-Agriculture (http://rosagriculture.org/) is another
international group that aims to introduce ROS for agriculture robots. I highly recommend
that you follow this group if you are interested because they are very well motivated team
that can do crazy things with several tons machines, by using ROS. Check by instance this
video (https://youtu.be/obu_Ru2gDHk) about an autonomous tractor running ROS, built
by Kyler Laird of the ROS Agriculture group.

H O W T O D E V E L O P F O R R O B O T S W I T H R O S

Now, if you are convinced of becoming a ROS developer, in this guide you are going to find
the steps that you can take to become one. We have divided the book in the following
sections that should cover the whole development process:

• Pre-requisites

• Setting Up a ROS2 Development Environment

• Learning ROS2

• Coding in ROS2

• Testing ROS2 programs

• Practicing with ROS2 real robots

• Post-requisites

Let's go one by one.

1 5 www.theconstructsim.com

https://bit.ly/35LyvCx
http://rosagriculture.org/
https://youtu.be/obu_Ru2gDHk

C H A P T E R 1 : P R E - R E Q U I S I T E S

We do not know which experience you have as software developer. We found that many
people who come new to ROS lack the basic skills necessary to start programming in ROS.
That is why we have included here a section of pre requisites that you must meet before
trying to get into ROS.

If you want to develop for ROS based robots, you need to know in advance how to program
either in C++ or Python. Also you need to be comfortable using the Linux shell. Those two
are mandatory!

W H Y L I N U X ?

You may be wondering if you could create ROS programs using Windows or even Mac,
instead of Linux. Our suggestion is that you go to Linux unless you are really an expert
software developer. The Linux version of ROS is the most mature of all of them, which
means that you will have less trouble trying to make something to work in ROS. The
problem here is that learning ROS has a very stepped curve, so you don’t need to add more
confusion to your learning than the one of ROS itself.

The Windows version of ROS (https://tinyurl.com/y3kv8wmh) is still in a very early state,
so you can find confusing to try to make basic ROS things work properly. If you are new to
ROS, you don’t need to add more confusion to the one that ROS actually has.

The Mac version is more mature than the Windows one (https://tinyurl.com/y59b5mgy),
but again, less than the Linux one. Additionally, there is less support in the community list
of questions, so unless you are an expert in both Mac system and ROS, you may have a lot
of trouble finding errors.

Believe us when we say that your safest bet is to learn Linux and go with ROS with it.
Actually, learning the basics of Linux is quite simple and quick. However it is up to you!

In case you don’t know Linux and want to give it a try, check this free online course we have
created that teaches you the specific subjects of Linux that you are going to need for robotics
with ROS:

• Linux for robotics free online course: https://tinyurl.com/2vesr3fw

1 6 www.theconstructsim.com

https://bit.ly/35LyvCx
https://tinyurl.com/y3kv8wmh
https://tinyurl.com/y59b5mgy
https://tinyurl.com/2vesr3fw

S H O U L D I L E A R N P Y T H O N O R C + + ?

As you may know, you can create ROS programs mainly in two programming
languages: Python and C++. Mostly, whatever you can do in ROS with C++, you can do
it also with Python. Furthermore, you can have C++ ROS programs talking to other
Python ROS programs in the same robot. Since the nodes communicate using standard
ROS messages, the actual language implementation of the nodes is not affecting their
communication. That is the beauty of ROS.

If that is the way of working of ROS, then, why not to let everybody program in the
language they want? Well, because programming in one language or another has its
consequences, especially when you are learning ROS. Let’s have a look at them.

Pros of programming ROS in Python

• Is faster to build a prototype. You can create a working demo of your node very fast if
you use Python, because the language takes care of a lot of things by itself so the
programmer doesn’t have to bother.

• You don’t need to compile, and spend endless hours trying to catch a hidden bug. Even
if you can have bugs in Python, the nature of them are a lot easier and faster to catch.

• You can learn Python very fast.
• You can make really short programs for complex things
• The final code of your node is quite easy to read and understand what it does.

1 7 www.theconstructsim.com

https://bit.ly/35LyvCx

• You can do anything with Python. Python is a
very powerful language with libraries for
anything you want.

• It is easier to integrate it with web services
based on Django. Since Django is based on
Python, you can integrate ROS functions easily
in the server calls.

• It is easier to understand some ROS concepts
if you use the Python API, because some
complex concepts are hidden for the developer
in the ROS Python API. For example, things
like the Callback Queue are handled directly by
the ROS Python API.

Cons of programming ROS in Python

• It runs slower. Python is an interpreted
language, which means that it is compiled in
run time, while the program is being executed.
That makes the code slower.

• Higher chances of crashing in run time, that is,
while the program is running on the robot.
You can have a very silly mistake in the code
that won’t be cached until the program runs
that part of the code (in run time).

• Unless you define very clear procedures, you
can end with a messy code in a short time if
the project grows. I mean, you need to impose
some rules for developing, like indicating every
class you import from which library is, force
strong types on any definition of a variable,
etc.

• Doesn’t allow real time applications.

Pros of programming ROS in C++:

• The code runs really fast. Maybe in your
project, you need some fast code.

• By having to compile, you can catch a lot of errors during compilation time, instead of
having them in run time.

1 8 www.theconstructsim.com

https://bit.ly/35LyvCx

• C++ has an infinite number of libraries that allow you to do whatever you want with
C++.

• It is the language used in the robotics industry, so you need to master it if you want to
work there.

• It is necessary for real time code.

Cons of programming ROS in C++:

• C++ is a lot more complex to learn and master. A LOT
• Just creating a small demo of something requires to create a lot of code.
• To understand what a C++ program does can take you a long time.
• Debugging errors in C++ is complex and takes time.

One situation that we get all the time, especially at the University, is that students that
come to learn ROS do not know neither C++ nor Python (actually, most of them not even
know about Linux shell, but that is another matter). In that case, we strongly recommend
start learning ROS using Python. Really, believe me, it is too much to try to learn ROS at the
same time that you learn C++. I’ve seen many times. People get frustrated and complain
about the difficulty of ROS. Yes, ROS is difficult but the thing is that you tried to swallow
too much by learning C++ and ROS at the same time.

Which Python version uses ROS?

All previous ROS distributions until 2020 have been based on Python 2.7. This means that
all the code already available that runs for those distributions needs to run on Python 2.7.

1 9 www.theconstructsim.com

https://bit.ly/35LyvCx

However, the final distribution of ROS 1 (ROS Noetic (http://wiki.ros.org/Distributions/
ReleasePolicy), released in 2020) is fully based on Python 3, as indicated by main ROS
developer Tully Foote in this interview (https://tinyurl.com/y43akq33).

Additionally, the next generation of ROS, that is, ROS 2, works only on Python 3, so I think
that the answer is clear from the point of view of ROS: learn Python 3.

Which Python version for other important libraries?

Apart from ROS, you will have to use many other libraries to build your robot programs.

For example, if you want to do image manipulation, then you will probably use OpenCV. If
you want to use machine learning with the robot, you will probably use Scikit, OpenAI-
Baselines or Tensorflow/Keras. If you want to use numerical computation you may use scipy,
pandas, or numpy. Except for OpenAI-Baselines, all of them work with both Python
versions.

Check this page for a complete list of the most important Python libraries ready for Python
3.

Additional considerations

On top of all said, Python 2.7 is going to reach its end of life in 2020. That doesn’t mean
that your Python 2.7 programs will stop working on that date! It just means that no
additional development will be done by the organization that develops Python (that is, The
Python Software Foundation). So all the Python software already existing will continue to
work, and you will still be able to develop also for it, but no new bug fixing

Finally, clarify that from a beginner point of view, the differences between Python 2.7 and
Python 3 are very small. My advice is, if you are a beginner, it will be a safe bet to start with
Python 3, and then, learn the small differences that affect your personal case when they
arise.

2 0 www.theconstructsim.com

https://bit.ly/35LyvCx
http://wiki.ros.org/Distributions/ReleasePolicy
http://wiki.ros.org/Distributions/ReleasePolicy
http://wiki.ros.org/Distributions/ReleasePolicy
https://tinyurl.com/y43akq33
https://scikit-learn.org/stable/
https://github.com/openai/baselines/tree/master/baselines
https://github.com/openai/baselines/tree/master/baselines
https://www.tensorflow.org/tutorials/keras
http://py3readiness.org/

So if you are finally convinced to learn Python, have a look at the free online course we have
created which specifically targets Python for robotics.

• Learn Python for robotics (online free course): https://tinyurl.com/wa8yupaj

As we already mentioned, ROS can be programmed by C++ or Python. However, if you
don’t know C++ very well, do not try to get into ROS with C++. If that is your situation,
please get yourself to learn ROS with Python. Of course, you can start learning C++ now
because C++ is the language used in the robotics industry and you will need to do the
transition from ROS Python to ROS C++ later. But your initial learning of ROS should be
done programming in Python. We know you are going to think that you can handle it and
take both things (learning C++ and ROS) at the same time. Based on our experience, we do
not agree at all. Bad decision. Good luck. Still, if you decide to go on that direction, take this
free online course that we have created that specifically targets C++ for Robotics (take into
account that it is just an introduction. C++ is really huge and you will keep learning it
while actually programming the robots):

• Learn C++ for robotics (online free course): https://tinyurl.com/3tte9w6h

Final comment, there exist also bindings for other languages like Prolog, Lisp, Nodejs or R.
Find a complete list of currently supported languages here (http://wiki.ros.org/
Client%20Libraries). We do not recommend you to learn ROS with any of those languages.
ROS is complicated enough to having to complicate it more with experimental languages.
Also, you will have plenty of time to practice with those once you know ROS with Python.

S H O U L D I L E A R N R O S 1 O R R O S 2

That is the billion dollars question!

2 1 www.theconstructsim.com

https://bit.ly/35LyvCx
https://tinyurl.com/wa8yupaj
https://tinyurl.com/3tte9w6h
http://wiki.ros.org/Client%20Libraries
http://wiki.ros.org/Client%20Libraries

And as always, the answer depends on your goals. I discussed this questions long enough in
this Youtube video (https://youtu.be/KcDCsx5sgX8), but let me summarize here the
reasons for one or the other:

1. Use ROS1 if you need something fully functional right now that takes advantage of what
already exists in ROS.

2. Use ROS2 if you are building or doing research on something with a longer term. ROS1
is going to die in 5 years, so at the end ROS2 will be the one, so you better prepare now.

3. ROS1 has functionalities that still have not been migrated to ROS2, if you need those,
either you develop them yourself for ROS2 or you will need to use ROS1. The exact
same happens with ROS2. It has some functionality that ROS1 doesn’t have and will not
have because they are lacks of the original design. If you need those features, you are
going to need ROS2.

In any case, deciding this here, given that you are a beginner, is a difficult question for you.
Hence, I’m going to decide for you, following the same reasoning as I did for Python2.7 or
Python 3. You are going to learn ROS2!

ROS2 is the future of ROS. Hence, the sooner you start the better. It is also starting to be
mature, so you can do many things with it. Then, learn ROS2 and in case you need some
functionality from ROS1, learn that in ROS1 and use the ROS_bridge to connect your ROS2
programs with the other ROS1 programs (you don’t need to worry now about what is the
ROS_bridge, you will learn what it is and how to use it in any basic ROS2 course).

2 2 www.theconstructsim.com

https://youtu.be/KcDCsx5sgX8
https://bit.ly/35LyvCx

C H A P T E R 2 : S E T T I N G U P A R O S 2
D E V E L O P M E N T E N V I R O N M E N T

After having met the pre-requisites to start learning ROS2, next thing you need to do is to
set your system up so you can get ROS2 installed in a machine in which to develop your
programs and practice while learning. Let’s see how to set up a machine for programming
for robots with ROS2. You basically have two options:

1. Use our online ROS Development Studio which already provides everything installed
and setup for any type of computer, and requires only a web browser.

2. Install ROS2 in your local computer. Several options are available here.

Let's cover now those two options.

U S I N G T H E R O S D E V E L O P M E N T S T U D I O

This is by far the easiest way to start with ROS. The ROS Development Studio (ROSDS) is
an online development platform provided by The Construct to allow people develop for ROS
fast and without caring about the details under the hood.

2 3 www.theconstructsim.com

https://bit.ly/35LyvCx

You only need a web browser to access the ROSDS at http://app.theconstructsim.com. Once
you are in, you will be able to start a new ROS project (we call it a rosject ;-) and start
developing using the integrated IDE, the Linux shells and even the provided simulations of
the robots. Please refer to this Youtube playlist (https://tinyurl.com/yx9lx5nb) for a series
of Live Class example videos showing how to use the ROSDS.

The ROSDS provides a complete development environment as if you had everything
properly configured in your computer. The advantages are:

• You don’t need to install anything in your computer

• You can use Windows, Mac or Linux based computers. So don’t worry about the system of
your students’ computer.

• If something you write breaks the ROS system, you don’t care because just by re-starting
the ROSject, the ROS system gets re-started to its initial state.

• You can create projects for many different distributions: Kinetic, Melodic, Dashing, Foxy,
etc…

• You can share your ROS code with a single link and the code will work the same way to
anybody who receives the link (including simulations, datasets and documentation). Here,
there are a couple of examples:

• This is an example of one of a ROS Live Class delivered by Alberto from The
Construct, where he teaches how to do ROS topics statistics with ROS2: https://
app.theconstructsim.com/#/l/d3a5164/ (click on the link to get a full copy of the code
and documentation).

• This is another example where Alberto teaches Basic Robotics probability with a
simulated ROSbot: https://app.theconstructsim.com/#/l/327e8e7d/ (click on the link
to get a full copy of the code and documentation).

The Construct’s ROSDS is widely used by Universities and research centres worldwide
because they don’t require the students to install anything in their computers, specially
when that requires to partition the hard disk with different operating systems.

You can skip the rest of this chapter if you decide to use the ROSDS.

2 4 www.theconstructsim.com

http://app.theconstructsim.com
https://tinyurl.com/yx9lx5nb
https://app.theconstructsim.com/#/l/d3a5164/
https://app.theconstructsim.com/#/l/d3a5164/
https://app.theconstructsim.com/#/l/327e8e7d/
https://bit.ly/35LyvCx

I N S TA L L I N G R O S 2 I N YO U R M A C H I N E

The section explains how to install ROS2 in Linux. ROS2 works on Linux Ubuntu, Linux
Debian or Linux Gentoo as well as MacOS and Windows. We are only going to cover the
installation of Linux Ubuntu because it is simplest and the one more mature. Remember,
you must remove problems when dealing with ROS, especially if you are beginner.

We will assume that you don’t even have Ubuntu installed, so let’s start by installing the
operating system.

1) Installing Ubuntu

To have Ubuntu working on your Windows machine, you have two options:

a) Install Ubuntu on the machine

What we recommend you is to install one of the latest versions of Ubuntu in your computer.
As up today, June 2021, we recommend you to install Ubuntu 20.04. Check this page
(https://www.ubuntu.com/download/desktop) for a guide on how to install Ubuntu on a
windows computer. It covers two options: removing completely the Windows partition
substituting it by Ubuntu, or making a dual boot where you can have both systems working
on the same machine (you decide which operating system to use on boot time).

b) Use a virtual machine with Ubuntu installed

Still, if you are not convinced about installing Ubuntu in your machine and keep thinking
about using Windows or Mac for ROS development you can use a virtual machine with
Ubuntu installed on your home O.S. (either Mac or Windows). Here you can find a post
(https://linuxhint.com/install_ubuntu_virtualbox_2004/) about how to install Ubuntu
20.04 on Virtual Box. I really don't recommend this option because you are adding an
additional layer of complexity to a subject that is quite complex on the first time. Also, you
will see that the whole system will go very slow.

2) Installing ROS2

Once you have an Ubuntu system working in your computer, you need to install ROS2 on it.

We are going to cover how to install the latest release, ROS2 Galactic. Those instructions
are a simplification from the original instructions published by Open Robotics here: https://
bit.ly/3idFsUp

2 5 www.theconstructsim.com

https://www.ubuntu.com/download/desktop
https://linuxhint.com/install_ubuntu_virtualbox_2004/
https://bit.ly/3idFsUp
https://bit.ly/3idFsUp
https://bit.ly/35LyvCx

Step 1 – Configuration

The first step is setup your package environment. Type the following commands:

Step 2 – ROS2 Installation

Download the latest build of ROS2 Galactic by doing the following command:

Then unpack the package downloaded:

Then update all the package system in your Ubuntu and install ROS2 dependencies

Now you are ready to use ROS2. For that, you need to source it on any shell you want to
launch a ROS2 command. Do the following command to source ROS2:

1 sudo apt install software-properties-common
sudo add-apt-repository universe
sudo apt update && sudo apt install curl gnupg lsb-release
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/
share/keyrings/ros-archive-keyring.gpg
echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-
keyring.gpg] http://packages.ros.org/ros2/ubuntu $(lsb_release -cs) main" | sudo tee /
etc/apt/sources.list.d/ros2.list > /dev/null

1 cd ~
wget https://github.com/ros2/ros2/releases/download/release-galactic-20210523/ros2-
galactic-20210523-linux-focal-amd64.tar.bz2

1 mkdir -p ~/ros2_galactic
cd ~/ros2_galactic
tar xf ~/Downloads/ros2-galactic-20210523-linux-focal-amd64.tar.bz2

1 sudo apt update
sudo apt install -y python3-rosdep
sudo rosdep init
rosdep update
rosdep install --from-paths ~/ros2_galactic/ros2-linux/share --ignore-src --rosdistro
galactic -y --skip-keys "console_bridge fastcdr fastrtps osrf_testing_tools_cpp
poco_vendor rmw_connextdds rti-connext-dds-5.3.1 tinyxml_vendor tinyxml2_vendor urdfdom
urdfdom_headers"
sudo apt install -y libpython3-dev python3-pip

1
2
3
4

. ~/ros2_galactic/ros2-linux/setup.bash

2 6 www.theconstructsim.com

https://github.com/ros2/ros2/releases/download/release-galactic-20210523/ros2-galactic-20210523-linux-focal-amd64.tar.bz2
https://bit.ly/35LyvCx
https://raw.githubusercontent.com/ros/rosdistro/master/ros.key
http://packages.ros.org/ros2/ubuntu

After that you will have ROS2 installed in your computer. Now you are ready to use ROS2
in your computer. But before you can start creating your ROS2 programs, you need to learn
how ROS2 works. That is the subject of the next chapter.

2 7 www.theconstructsim.com

https://bit.ly/35LyvCx

C H A P T E R 3 : L E A R N I N G R O S 2

Now, with all the previous background and setup, it is the moment to start learning ROS2.

F I V E M E T H O D S T O L E A R N R O S 2

1- The official tutorials: ROS2 wiki

The official ROS2 tutorial website (http://docs.ros.org/en/galactic/Tutorials.html) provided
by Open Robotics (https://www.osrfoundation.org/), that is, the organization that builds
and maintains ROS, is very comprehensive and it is available in multiple languages. It
includes details for installation, how tos, documentation of ROS2, etc. and it’s completely
free. Just follow the tutorials provided on ROS2 Wiki page, and get started.

This type of tutorial belongs to the traditional academic learning materials. They start by
describing concepts one by one, following a well defined hierarchy. It’s good material but
easy to get lost while reading, and it takes time to grasp the core spirit of ROS.

There is a long list of tutorials there. The list is so big that it can be overwhelming. If you
decide to use this method to learn ROS, then we recommend you that you follow the
following order for the tutorials for optimal learning:

• Creating a workspace: https://bit.ly/3uU6pzq

2 8 www.theconstructsim.com

http://docs.ros.org/en/galactic/Tutorials.html
http://docs.ros.org/en/galactic/Tutorials.html
https://www.osrfoundation.org/
https://bit.ly/3uU6pzq
https://bit.ly/35LyvCx

• Creating your first ROS2 package: https://bit.ly/3piEAPY
• Creating a launch file: https://bit.ly/3cc3BXx
• Understanding ROS2 topics: https://bit.ly/2SSJUxt
• Understanding ROS2 services: https://bit.ly/3cfYYMi
• Understanding ROS2 parameters: https://bit.ly/3chSywh
• Understanding ROS2 actions: https://bit.ly/3icmsph
• Creating custom ROS2 Msg and Srv files: https://bit.ly/2SWBKnr
• Composing multiple nodes in a single process: https://bit.ly/3wRMaUg
• Using colcon to build packages: https://bit.ly/3w10dXm
• Using TF2 with ROS2: https://bit.ly/2SVvE77
• Using URDF with robot_state_publisher: https://bit.ly/3vNMVh7
• Management of nodes with managed lifecycles: https://bit.ly/3fKvsjZ
• ROS2 Navigation: https://navigation.ros.org/
• ROS2 Control: https://ros-controls.github.io/control.ros.org/

2- Video tutorials

Video tutorials provide a unique presentation which show how programs are created and
ran, in a practical way. It allows you to learn how to carry a ROS project from the
professional or instructor, which alleviate a beginner’s fear to start learning ROS to a certain

2 9 www.theconstructsim.com

https://bit.ly/35LyvCx
https://bit.ly/3piEAPY
https://bit.ly/3cc3BXx
https://bit.ly/2SSJUxt
https://bit.ly/3cfYYMi
https://bit.ly/3chSywh
https://bit.ly/3icmsph
https://bit.ly/2SWBKnr
https://bit.ly/3wRMaUg
https://bit.ly/3w10dXm
https://bit.ly/2SVvE77
https://bit.ly/3vNMVh7
https://bit.ly/3fKvsjZ
https://navigation.ros.org/
https://ros-controls.github.io/control.ros.org/

degree. It is plenty of tutorials of ROS on Youtube. Just search for ROS tutorial and select
among all the videos shown.

But there is a drawback that anyone can create a video, this means not require any sort of
qualification to publish their content, credibility might be shifty. Also it is difficult to find an
order on the videos, that provide a full learning path. We only recommend to use this
method when you want to learn about a very specific point of ROS, or when you need to
find the answer to a very specific question.

One of the ROS video tutorial course provided by Dr. Anis Koubaa from Prince Sultan
University, is a great starting point to learn ROS (https://tinyurl.com/yxulr3g4). Course
combines a guided tutorial, different examples and exercises with increasing level of
difficulty along with the use of an autonomous robot.

Another of the great resource is our Youtube channel (https://tinyurl.com/y3bvvcmn).
Sorry to mention like that, but it is true, based on the comments people leave for us! In our
channel we teach about ROS basics, ROS2 basics, Gazebo basics, ROS Q&A, and even real
robot projects with ROS. Please have a look at it and let us know if you actually find it
useful or not.

3 0 www.theconstructsim.com

https://bit.ly/35LyvCx
https://tinyurl.com/yxulr3g4
https://tinyurl.com/y3bvvcmn

3- ROS face-to-face training

Face-to-face instructional courses are the traditional way of teaching. It builds strong
foundations of ROS into students.

ROS training is usually a short course, it requires you to focus on learning ROS in a
particular environment and a period of time. With the interaction with instructors and
colleagues which allows you to get feedback directly. Under the guidance and supervision of
instructors, it definitely encourages a better result.

The following are some of the institutions that are holding live ROS training or summer
courses on a regular basis:

• FH Aachen Summer Schools (https://tinyurl.com/yxsjyjs6)

• ROS China Summer School (http://www.roseducation.org/)

• ROS Industrial Trainings: a series of trainings on ROS with specific emphasis on ROS
Industrial. They have several trainings distributed along the three continents Europe,
America and Asia (https://rosindustrial.org/events-summary)

• Mastering Mobile Manipulators Training: a full week of learning how to build full ROS
applications for mobile manipulators, including the navigation, arm control, grasping,
robot behavior and user interfaces (https://bit.ly/3ci6IgW)

When we talk about ROS face-to-face training we are not including the conferences, since
the learning that you can get there is very little and specific. ROS conferences are more to be
up to date of the latests progress in the field, rather than learning ROS. So it is supposed
that you go to the conferences with the minimum ROS knowledge to take any profit from it.

Some of the ROS conferences around the world:

• The official ROSCON https://roscon.ros.org/

• ROSCON France https://roscon.fr/

• ROSCON Japan http://roscon.jp/

• The ROS Developers Day online http://rosdevday.com/

3 1 www.theconstructsim.com

https://tinyurl.com/yxsjyjs6
http://www.roseducation.org/
https://rosindustrial.org/events-summary
https://bit.ly/3ci6IgW
https://roscon.ros.org/
https://roscon.fr/
http://roscon.jp/
http://rosdevday.com/
https://bit.ly/35LyvCx

4- ROS Books

ROS books are published by experienced roboticists. They extract the essence of ROS and
present a lot of practical examples.

Books are good tools for learning ROS, however, it requires a high self-discipline and
concentration so as to achieve the desired result. (but they are only as good as the person
using them, it depends on many factors. It allows many distractions to easily affect your
progress, unless the strong self-discipline to ensure is paying full attention at all times).

Here you have a list of ROS2 books so far:

• ROS2 in 5 Days (https://amzn.to/2l5DkTE)

• Starting with ROS2 (https://www.youtalk.jp/get-started-ros2/)

3 2 www.theconstructsim.com

https://bit.ly/35LyvCx
https://amzn.to/2l5DkTE
https://www.youtalk.jp/get-started-ros2/

5- Integrated ROS2 learning platform – Robot Ignite Academy

We have created integrated learning platform as a new way of learning ROS fast. Compared
to other learning methods, it provides a more comprehensive learning mechanism. It is the
easiest and fastest of all the methods.

In the platform, you will learn ROS2 by practicing on simulated robots. You will follow a
step by step tutorial and will program the robots while observing the program’s result on
the robot simulation in realtime. The whole platform is integrated into a web page so you
don’t have to install anything. You just connect by using a web browser from any type of
computer and start learning.

Well, perhaps the only drawback is it is not free. You can, though, try the platform with a
free account at www.robotigniteacademy.com

We have to tell you that many Universities around the world are using that academy to
teach their students about ROS and robotics with ROS. For instance: University of Tokyo,

3 3 www.theconstructsim.com

http://www.robotigniteacademy.com
https://bit.ly/35LyvCx

University of Michigan, University of Sydney, University of Reims, University of
Luxembourg, etc.. as well as companies like Softbank, 3M, Robotnik or HP.

Recently, we have added a series of Remote Real Robot Labs, to which students can connect
remotely and practice with real robots from their location. The labs include a wheeled robot
and an arm robot, to practice all basic robotics concepts with real robots.

H O W T O A S K Q U E S T I O N S

It will happen that while learning or creating your own
ROS programs, you will have doubts. Things that doesn't
work as the documentation indicates, strange errors that
appear even if you checked that everything is correct,...
you will need to get support from the community in
order to keep improving. For that purpose, you can use
two different channels to ask questions:

• ROS answers (http://answers.ros.org/): that is the
official forum for questions about ROS. Use that forum
to ask your technical questions about ROS. Also
you can use it for checking for previous answers to
similar questions to yours. Finally, use it to help others
by answering the questions that you know about.

• ROS discourse (https://discourse.ros.org/): this is a
second official forum. However, this forum is not about
answering technical questions. Instead it is about
announcing things related to ROS. If you have created
a new package that interfaces ROS with neural
networks, or you are holding an event about ROS, or
you are releasing a product about ROS, that is the
place to post it. Do not use this forum for technical
questions, but for announcements or questions related
to the ROS community.

C O N C L U S I O N

From all the methods presented there, I’m going to
recommend you our online Robot Ignite Academy

3 4 www.theconstructsim.com

http://answers.ros.org/
https://discourse.ros.org/
https://bit.ly/35LyvCx

because it is by no means, the fastest and more comprehensive route to learn ROS. It is not
something that I say, but what our customers say. Our online academy has a price but it will
speed considerably your learning of ROS.

In case you don't want to spend money and you are not in a hurry, then the best option
would be to follow the wiki tutorials. They are a little bit difficult to follow and it is a slow
path to learn ROS, but it definitely works. After all, that is the method the author of this
guide used to learn ROS.

As a final recommendation, Alberto from The Construct delivers a free live online class
about ROS/ROS2 every Tuesday at 18:00 CEST/CET (the ROS Developers Live Class,
https://tinyurl.com/y3bvvcmn). We recommend you to attend since it is 100% practice
based and deals with a new ROS2 subject every week.

3 5 www.theconstructsim.com

https://bit.ly/35LyvCx
https://tinyurl.com/y3bvvcmn

C H A P T E R 4 : C O D I N G I N R O S 2

In order to create ROS programs, you will need a C++ or Python code editor. In this
chapter we are going to show you a list of integrated environments for programming ROS
with those languages. Many others do exist, but we are putting here the most complete and
easy to start with.

Note: since ROS only fully works on Linux (at least at present), all the IDEs included here
are Linux environments, even if Windows versions may exist.

C L O U D I D E S

Using the ROS Development Studio as your IDE

You can simplify your life when working with ROS by using the ROS Development Studio
(http://rosds.online). The ROSDS comes off-the-shelf with ROS, Gazebo, and IDE
already installed. You need no installation in your computer, just a web browser. The
main advantage of the ROSDS is that it allows you to develop on ANY operating system. It
also allows programming in both C++ or Python with autocomplete functionality.

Additionally, ROSDS provides running simulations of the robots, so you can quickly test
your programs in realistic simulations of robots and check that your program is actually

3 6 www.theconstructsim.com

http://rosds.online
https://bit.ly/35LyvCx

doing what is supposed to do. This is a very important step while developing for robots (as
you will see in the next chapter). You have a full set of tutorials about how to use ROSDS
here.

ROSDS allows you to share your already working ROS projects with your peers with a
single click. By sharing your project, your mates will receive an exact copy of what you
shared. This implies that your peers will be able to run it the exact same way as you. This is
interesting for replicating research results, for providing exercises to students, for robot
competitions based on simulations or for just sharing code with non-experts.

Finally, let us mention that ROSDS can deploy into your real robot. You can switch from
testing in the simulation to running in the robot with a couple of clicks.

If you choose to use the ROSDS then you can skip the rest of this chapter.

L O C A L I D E S

What follows is a list of some of the best editors for each language (Python and C++) that
you can install in your local computer.

Eclipse
• Languages supported: C++ and Python
• O.S.: Linux, Windows, macOS
• Download from: https://www.eclipse.org/downloads/
• How to configure it for ROS: http://wiki.ros.org/IDEs#Eclipse

3 7 www.theconstructsim.com

https://www.eclipse.org/downloads/
http://wiki.ros.org/IDEs#Eclipse
https://bit.ly/35LyvCx

CLion
• Languages supported: C++
• O.S.: Linux, Windows, macOS
• Download from: https://www.jetbrains.com/clion/
• How to configure it for ROS: http://wiki.ros.org/IDEs#ROS-Robot_Operating_System

NetBeans
• Languages supported: Python
• O.S.: Linux, Windows, macOS
• Download from: http://www.netbeans.org/
• How to configure it for ROS: http://wiki.ros.org/IDEs#NetBeans

QTCreator
• Languages supported: C++
• O.S.: Linux, Windows, macOS
• Download from: https://www.qt.io/download
• How to configure it for ROS: http://wiki.ros.org/IDEs#QtCreator

PyCharm
• Languages supported: Python
• O.S.: Linux, Windows, macOS
• Download from: https://www.jetbrains.com/pycharm/download/#section=mac
• H o w t o c o n fi g u r e i t f o r R O S : h t t p : / / w i k i . r o s . o r g /

IDEs#PyCharm_.28community_edition.29

Visual Studio Code
• Languages supported: Python
• O.S.: Linux, Windows, macOS
• Download from: https://code.visualstudio.com/download
• How to configure it for ROS: https://marketplace.visualstudio.com/items?

itemName=ms-iot.vscode-ros

3 8 www.theconstructsim.com

https://www.jetbrains.com/clion/
http://wiki.ros.org/IDEs#ROS-Robot_Operating_System
http://www.netbeans.org/
http://wiki.ros.org/IDEs#NetBeans
https://www.qt.io/download
http://wiki.ros.org/IDEs#QtCreator
https://www.jetbrains.com/pycharm/download/#section=mac
http://wiki.ros.org/IDEs#PyCharm_.28community_edition.29
http://wiki.ros.org/IDEs#PyCharm_.28community_edition.29
https://marketplace.visualstudio.com/items?itemName=ms-iot.vscode-ros
https://marketplace.visualstudio.com/items?itemName=ms-iot.vscode-ros
https://bit.ly/35LyvCx

C H A P T E R 5 : T E S T I N G

How can you test the programs you are developing for a robot? If you are building a
program for a robot, you have to make sure that it works properly and for that you need
some tests.

 If you think that you should test your programs directly on the robot, think again. Testing
on the real robot is only the last of the steps you will need to do in a testing procedure. Why
you should test on the real robot first?:

• Because you can break the robot or harm somebody. When you start testing your code,
many things can be wrong in your program that can make the robot go crazy and crash
against something. We are not talking about mobile apps here!! We are talking about
physical stuff that can be broken or harm somebody.

• Because testing on the robot takes a ot more time than testing on your local machine. To
test on the real robot, usually you will need to have a physical setup that you need to
rebuild everytime that you test (because by doing the test, the physical robot will change
position or things of the environment that need to be reset).

Testing with the real robot is mandatory for the creation of a program for a robot (at
least at present). However, it is the last of the steps in the testing procedure.

The proper procedure for developing for robots works as follows:

1. You create the ROS program in your computer

2. You test someway in your computer that the program works

3 9 www.theconstructsim.com

https://bit.ly/35LyvCx

3. Based on the test results, you modify the program until the local testing works properly

4. Once you are sure that your program works correctly on your computer, then you test on
the real robot.

5. You will see that in the real robot, the results differ from your local tests. Then you need
to modify the code again, as well as the local tests in order to reflect the points that were
not working on the robot

6. Repeat the whole testing cycle until it works on your local machine first, and then on the
real robot

IMPORTANT: if you want to develop fast and with as less hassle as possible, you should
never go and try your code on the robot until it works properly in the local test
environment. If the code doesn't work in your local tests, is never going to work on the
real robot!

Then the question is, how do you test your programs in your local machine?

Well, you have several of options to test your ROS programs without having to use a robot.

L E V E L S O F T E S T I N G

(this section information was extracted from ROS wiki)

Level 1. Library unit test (unittest, gtest): a library unit test should test your code sans ROS
(if you are having hard time testing sans ROS, you probably need to refactor your library).
Make sure that your underlying functions are separated out and well tested with both
common, edge, and error inputs. Make sure that the pre- and post- conditions of your
methods are well tested. Also make sure that the behavior of your code under these various
conditions is well documented.

Level 2. ROS node unit test (rostest + unittest/gtest): node unit tests start up your node
and test its external API, i.e. published topics, subscribed topics, and services.

4 0 www.theconstructsim.com

https://bit.ly/35LyvCx

Level 3. ROS nodes integration / regression test (rostest + unittest/gtest): integration tests
start up multiple nodes and test that they all work together as expected.

Level 4. Functional testing. At this level, you should test the full robot application as a
whole. Check that the robot is able to navigate, to grasp, to recognise people, etc... You will
need to devise some tests that allow you to check that your code is still working on those
functionalities. Usually the tests are done using simulations or bag files.

C R E AT I N G T E S T S O F L E V E L S 1 , 2 A N D 3

In order to create tests for those levels, you will need to use the following libraries and
packages:

• Specifically for Level 1 of tests

• gtest: also know as Google Test, it is used to build unit tests in C++. You can get the
full documentation about using gtest with ROS in this link.

• unittest: is the framework provided for doing unit tests in Python. You can get a full
documentation about using unittest with ROS in this link.

• Additionally, for levels 2 and 3 of tests:

• rostest: it is a package provided by ROS that allows the creation of nodes with specific
configurations to test that your whole ROS program is working properly inside the ROS
framework by executing unit tests from within. That is why, for the creation of tests for
those two levels we need to combine rostest with either gtest (C++ case) or unittest

(Python case). You can get a full documentation about using rostest in this link.

4 1 www.theconstructsim.com

https://bit.ly/35LyvCx

C R E AT I N G T E S T S O F L E V E L 4

Level 4 tests are the ones that allow us to test if the program is actually doing what is
supposed to do. For testing that we have three different option, from further to closer to
reality.

Using mocks for testing

If you are a developer, you already know what mocks are. You can create your own mocks
that emulate the connection to the different parts of the ROS API of your robot. In this
page, you will find some information about how to use mocks in ROS.

Working with mocks in ROS is not an easy option since it requires a lot of preparation work.
Also it is of very limited usefulness since can only produce what you have put on it previous.
Using mocks is an option that I don’t really recommend for developing. Use it only if you
cannot use any of the options below or if you are creating unit tests for your code. On my
personal experience, I have never used them, always used any of the next two options.

Anyway, if you want to use mocks for your testing, then I recommend you to use the Google
Test environment https://github.com/google/googletest

Using ROS bags for testing

ROS provides a way to record in a log file the full ROS API of a robot while running on a
real life situation, and then run it back later on another computer. This log file is called a
ROS bag. When you run a ROS bag on another computer, the computer will be showing to
your programs the same ROS API that had when it was recorded.

You can learn how to use ROS bags here: record and replay of ROS bags (http://
wiki.ros.org/rosbag).

4 2 www.theconstructsim.com

https://github.com/google/googletest
http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag
https://bit.ly/35LyvCx

ROSbags are a limited system in the sense that you can only use them for the case that you
want to create algorithm that does something from sensor data. This means, you cannot
generate commands to the robot because it is only a reproduction of data, so you can get the
same data as the robot got when recorded, but you cannot decide new actions for the robot.

Using simulations for testing

4 3 www.theconstructsim.com

https://bit.ly/35LyvCx

So if you want to go pro without having to use a real robot, you should use simulations of
robots. Simulations is the next step in software development. This is like having the real
robot on your side but without having to care for the electronics, hardware and physical
space. Roboticists consider simulations as the ugly brother of robotics. Roboticists usually
hate to use the simulation because it is not the real robot. Roboticists like the contact with
the real thing. But fortunately, we are talking here with the opposite kind of people, those
who want to keep their hands off the hardware. For those, simulations are key.

Let me tell you one thing: even if roboticists do not admit, robot simulations are the key to
intelligent robots. More on that in future posts, but remember you read this first here!
(https://www.theconstructsim.com/simulations-key-intelligent-robots/)

In the case of simulations, you have a simulation of the robot running in your computer that
you can run and act like the real robot. Once the simulation is running, your computer will
present to your programs the same ROS API that you would had if you were in the
computer of the real robot. That is exactly the same as in the case of the ROS bags, with the
advantage that now you can actually send commands to the robot and the simulated robot
will reply accordingly to your commands. That is awesome!

To use robot simulations, ROS provides the Gazebo simulator (http://gazebosim.org/)
already installed. You only need to have the simulation of the robot you want to program for
running. Usually, the companies creators of the robot provide already the simulation of their
robot that you can download and run on the Gazebo simulator.

Installing simulations and making them run could be a little more of hassle. In case that you
want to avoid all that work, I recommend you to use our ROS Development Studio that
contains the simulations ready to be launched with a single click, as well as having ROS,
IDE and other useful tools.

D E B U G G I N G

You will also need to debug the code. Most of the IDEs we have presented provide
integrated debugging tools on them. However, you can also use all the standard debugging
tools used for typical C++ code, including but not limited to:

• GDB (http://sourceware.org/gdb/)

• Oprofile (http://oprofile.sourceforge.net/news/)

• Valgrind (http://valgrind.org/)

4 4 www.theconstructsim.com

https://bit.ly/35LyvCx
https://www.theconstructsim.com/simulations-key-intelligent-robots/
http://gazebosim.org/
http://sourceware.org/gdb/
http://oprofile.sourceforge.net/news/
http://valgrind.org/

C H A P T E R 6 : L I S T O F R O S 2 R O B O T S
T O P R A C T I C E W I T H

At a certain point, you will need to start practicing with real robots. You can start with any
of the following ones, which are reasonably accessible.

Turtlebot 3, by Robotis

This was the first commercial robot able to run ROS2 on it. Turtlebot3 was designed to run
ROS1 by default, so if you buy it, it will come with ROS1 pre-installed. However, the guys
from Robotis quickly prepared a tutorial about how to make your Turtlebot3 run ROS2. The
full tutorial is here.

ROSbot, by Husarion.

Again, this robot default system is ROS1 but Husarion has released a full tutorial about how
to change the default ROS version to ROS2. The full tutorial is here.

4 5 www.theconstructsim.com

https://bit.ly/35LyvCx
https://www.roscomponents.com/en/mobile-robots/214-turtlebot-3.html
https://emanual.robotis.com/docs/en/platform/turtlebot3/ros2_setup/
https://emanual.robotis.com/docs/en/platform/turtlebot3/ros2_setup/
http://www.husarion.com/
https://community.husarion.com/t/using-rosbot-with-ros2/975

Rover Zero, by Rover Robotics

Same procedure as the previous 2. Default system is ROS1 but Rover provides a git repo
with the code and instructions about how to install the ROS2 drivers for that robot. Check
it out here.

Hadabot, by Hadabot

This is the first ROS2 native robot I have seen. It is a very simple robot with the main
purpose of learn ROS2 while applying it to the real robot. Basically, just a pair of wheels
with encoders, more than enough for learning basic ROS2. Check it out here.

e-puck 2, by GCTronic.

The e-puck 2 robot is a very small and cool robot with lots of sensors. The e-puck 2, from
conception, it has nothing to do with ROS. However, recently Cyberbotics company created
a ROS2 driver for that robot so we can now use this excellent robot with our favorite
ROS. Here the drivers with tutorials.

4 6 www.theconstructsim.com

https://bit.ly/35LyvCx
https://roverrobotics.com/products/rover-zero
http://wiki.ros.org/roverrobotics-ros2
http://wiki.ros.org/roverrobotics-ros2
http://www.hadabot.com/
https://www.hadabot.com/
https://www.gctronic.com/e-puck2.php
https://github.com/cyberbotics/epuck_ros2

Open Manipulator, by Robotis

This is the only arm robot running ROS2 that I’m aware of. It is produced by the creators of
the Turtlebot3 and, again, the robot boots initially with ROS1. However, the Robotis team
have created a detailed tutorial about how to set this manipulator work with ROS2. Find
the tutorial here.

Using a remote real robot lab

In case you cannot afford to buy a robot, you can use the remote real robot labs that we at
The Construct have created for students a set of Remote Real Robot Labs, to which students

47 www.theconstructsim.com

https://bit.ly/35LyvCx
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/ros2_setup/
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/ros2_setup/

can connect remotely and practice with real robots from their location. The labs include a
wheeled robot and an arm robot, to practice all basic robotics concepts with real robots.

 

4 8 www.theconstructsim.com

https://bit.ly/35LyvCx

C H A P T E R 7 : A D D I T I O N A L L E A R N I N G
Final step to become a robotics developer is to master some robotics related subjects.

Robots are living things, I mean, things that move around. That entails all a series of new
concepts that you need to learn (your program is not going to stay on a fixed place
anymore). I’m sure that as a software engineer you already have understood many of the
subjects above because they closely relate to the normal job of a software developer.
However, there are still some concepts closely tied to robotics that a software engineer
needs to master (in the same sense as if you need to program for invoices, you need to
understand some concepts of accounting).

What follows is a list of concepts that you need to understand to be able to create programs
for robots. I have included a link to online courses that teach those subjects:

• Basic mobile robots kinematics (https://app.theconstructsim.com/#/Course/46)

• Robot arm kinematics (https://app.theconstructsim.com/#/Course/51)

• Robot body dynamics (https://app.theconstructsim.com/#/Course/49)

• URDF robot model description (https://tinyurl.com/y2wrjmvx)

• Robot navigation (including SLAM, localization, path planning and obstacle avoidance)
(https://tinyurl.com/y68qso54)

• Robot manipulation (https://app.theconstructsim.com/#/Course/66)

• What is a frame reference system (https://tinyurl.com/y5en2dtf)

• Robot joint control (https://tinyurl.com/y6h4s4oz)

• Robotics perception (https://tinyurl.com/y6ycvcfo)

• Artificial intelligence: that is the key to create intelligent robots, combined with good
programming skills:

• Machine Learning (https://app.theconstructsim.com/#/Course/47)

• Deep Learning Basics (https://app.theconstructsim.com/#/Course/71)

• Reinforcement Learning (https://app.theconstructsim.com/#/Course/68)

4 9 www.theconstructsim.com

https://bit.ly/35LyvCx
https://tinyurl.com/y2wrjmvx
https://tinyurl.com/y68qso54
https://app.theconstructsim.com/#/Course/66
https://tinyurl.com/y5en2dtf
https://tinyurl.com/y6h4s4oz
https://tinyurl.com/y6ycvcfo
https://app.theconstructsim.com/#/Course/47
https://app.theconstructsim.com/#/Course/71
https://app.theconstructsim.com/#/Course/68

A P P E N D I X

Here you are going to find additional information about how to program for ROS. Those are
additional resources that can make you learn and improve your ROS level as a developer.

• The ROSCON, the official annual ROS conference created by the creators of ROS, the
Open Source Robotics Foundation. https://roscon.ros.org

• The ROS Developers Conference (http://www.rosdevcon.com). This is an annual online
ROS conference created by The Construct for ROS developers where the attendants
practice at the same time that the speaker is explaining. You can watch the presentations
of previous editions at The Construct Youtube channel

• The ROS Developers Podcast. A weekly podcast with insights about ROS from real ROS
experts around the world. (http://www.theconstructs im.com/category/
ros_developers_podcast/)

• ROS Best practices. A series of online documents that will help you create better ROS
code. (http://wiki.ros.org/BestPractices)

• ROS C++ Style guide. (http://wiki.ros.org/CppStyleGuide)

• The Construct public repo of robot simulations (check the branch name for different
ROS versions). (https://bitbucket.org/account/user/theconstructcore/projects/PS)

• Online shop called ROS Components. (https://www.roscomponents.com/en/)

• ROS.org official tutorials for learning ROS (wiki.ros.org/ROS/Tutorials)

• How to build a ROS based robot, series of Youtube videos. (https://tinyurl.com/
yxtmfmqj)

5 0 www.theconstructsim.com

https://bit.ly/35LyvCx
https://roscon.ros.org
http://www.rosdevcon.com
http://www.theconstructsim.com/category/ros_developers_podcast/
http://www.theconstructsim.com/category/ros_developers_podcast/
http://wiki.ros.org/BestPractices
http://wiki.ros.org/CppStyleGuide
https://bitbucket.org/account/user/theconstructcore/projects/PS
https://www.roscomponents.com/en/
http://wiki.ros.org/ROS/Tutorials
https://tinyurl.com/yxtmfmqj
https://tinyurl.com/yxtmfmqj

	Introduction
	We need you!
	Why not enough GOOD developers for robotics?
	What is the robot ROS API?
	What is ROS anyway?
	A history of ROS
	ROS for service robots
	ROS for industrial robots
	ROS for agricultural robots
	How to develop for robots with ROS

	CHAPTER 1: Pre-requisites
	Why Linux?
	Should I learn Python or C++ ?
	Should I learn ROS1 or ROS2

	CHAPTER 2: Setting Up a ROS2 development environment
	Using the ROS Development Studio
	Installing ROS2 in your machine

	CHAPTER 3: Learning ROS2
	Five methods to learn ROS2
	How to ask questions
	Conclusion

	CHAPTER 4: Coding in ROS2
	Cloud IDEs
	Local IDEs

	CHAPTER 5: Testing
	Levels of testing
	Creating tests of levels 1,2 and 3
	Creating tests of level 4
	Debugging

	CHAPTER 6: List of ROS2 robots to practice with
	CHAPTER 7: Additional learning
	Appendix

