
18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 1/39

PRESENTS

ROS Developers Live Class n82

How to create a course for The Robot Ignite Academy

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 2/39

In this class, you will learn how to create a new course for The Robot Ignite Academy

Interested in make a living teaching ROS and robotics subjects? In this Live Class we teach you how you
can create courses for teaching specific subjects of ROS and robotics and how to submit them to Robot
Ignite Academy to get 1.500€ per course.

From how to create it, it must contain minimally, how to assemble the different units, how to use the
simulations, and much more. Collaborate with us in this incredible community, and help ROS Developers to
continue their arduous learning path in a more enjoyable and unique way.

If you are interested in becoming a Robotics Developer you will need to know how to represent the robot
structure in the proper way so you can program it with ROS.

(To know more about becoming a robotics developer, read this guide about How To Become a Robotics
Developer (http://www.theconstructsim.com/become-robotics-developer/))

http://www.theconstructsim.com/become-robotics-developer/

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 3/39

This rosject has been created by Christian Chavez and Ricardo Tellez from The Construct. You can use
this rosject freely as long as you keep this notice.

REQUIREMENTS :

Basics of Linux. If you don't have that knowledge, check this FREE online course
(https://www.robotigniteacademy.com/en/course/linux-robotics/details/)

Ros Basics. If you don't have that knowledge, check this online course
(https://www.robotigniteacademy.com/en/course/ros-in-5-days/details/)

... That's it! Let's go!

In this class, we'll learn:

How to create a course for the Robot Ignite Academy

https://www.robotigniteacademy.com/en/course/linux-robotics/details/
https://www.robotigniteacademy.com/en/course/ros-in-5-days/details/

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 4/39

How to use this ROSject
A **ROSject** (http://rosjects.com) is a ROS project packaged in such a way that all the material it contains
(ROS code, Gazebo simulations and Notebooks) can be shared with any body using only a web link.
That is what we did with all the attendants to the Live Class, we shared this ROSject with them (so they can
have access to all the ROS material they contain).

Check this webinar to learn more about ROSjects and how to create your own ROSjects.

You will need to have a free account at the ROS Development Studio (http://rosds.online) (ROSDS). Get the
account and then follow the indications below.

Robot for today's Live Class

Today you're going to use the MPO-500 by Neobotix

How to create a course for Robot Ignite Academy

http://rosjects.com/
http://rosds.online/

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 5/39

0. What you need to create for the course?
In order to submit your course, you need to create 5 different notebooks teaching the material you want to
teach. You may also include some code or datasets (those are optionals).

First notebook is just a demo of what the whole course is going to achieve The units 2, 3, 4 are the ones
where you teach the subject divided into parts. Unit 5 is the project, where you make the student apply all
the part you taught into a single full project.

Before start creating the course, you need to decide a few things:
Decide the subject you want to teach. Select one of the available subjects here
Decide how you are going to divide your teaching in 3 notebooks
Decide the simulation you are going to use

The following is a list of all the steps required to create the course

1. Create the course template

After login into ROSDS, press on the button New Course

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 6/39

On the new page, fill all the details as follows:

ROS Configuration: Select the distribution of ROS you want to create the course for. You can create
courses for ROS Classic and ROS2. At present only ROS Kinetic and ROS2 Eloquent are accepted.

Subject: select the main subject of your course.

Title: What is the title of your course?

Tagline: that is a short single sentence that describes your course.

Overview: include a few sentences describing your course.

Learn: Indicate a list of the main things that the student will learn with your course

Author name: your full name

Author description: a brief description of you indicating why you are an expert in the subject you are
teaching in this course

Author's picture: upload a picture of yourself.

SELECT THE SIMULATION

Next thing you have to indicate is the simulation the students will use to practice. You have two options:

Use one of the simulations we already provide (ROSDS library)
Use your own simulation

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 7/39

IMPORTANT: if this is your first time doing a course, we highly recommend you to use one of the ROSDS
library.

If you select ROSDS Library

Select the world in which the robot will show

Select the robot that will be used in that world for the practice

If you select From a public repo

Indicate the repo address to clone with git
From that repo, indicate the package that launches the simulation
From that repo, indicate the launch file that launches the simulation

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 8/39

After pressing the button Create the template of the course will be created and you will get a screen similar
to this:

2. Launch the template to start creating the content

Press the red button that says Open of the previous image. Then press again the same button on the screen
that appears. Your template is being started.

After a few seconds, you will have the template opened. You should get a screen like this:

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 9/39

On the image you can see your working space for creating a course. You can see two main things:

1. The simulation on the back: the robot simulation has been launched by default so you can start testing
from minute one.

2. The main Jupyter notebook: similar to this notebook that you are reading

What you have to create for the course

The notebook units. They are stored in the notebook_ws. Always create 5 units as indicated in the
template. This content is mandatory.

Unit 1: introduction to the course with practical demo of what the student is going to achieve. Why
it is important for robotics
Unit 2, 3, 5: here you include the content of the subject you want to teach, divided into 3 units.
Project unit: this is the final unit which proposes to the student a full project that uses all the
concepts explained in the previous 3 units. This project requests the student to apply what he has
learnt during the unit into a full robotics project.

Some code required. If the code is C++, ROS, Python code, it must be stored in the catkin_ws. If the
code is web code, then store it in webpage_ws. This is optional code you want to provide to the
student, so he doesn't have to prepare everything. This is code needed to be in the system in order the
student be able to learn the course subject. This is optional.
Datasets. In case you require datasets for the course. This is optional.
Functional tests. Stored in the catkin_ws. This is the code that test that all the exercises and
commands you ask the user to develop will actually work in the online academy. This is mandatory.

3. Start creating the units

You need to create 5 units for each course. To access each notebook that you are going to fill, go to the top
of the notebook that will open when you start the course and use the links provided. Press on the link to
open the given notebook, and write/update thee notebooks.

IMPORTANT:

If you want to add code, include it in the catkin_ws, but, how will you do it? well let's explain it.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 10/39

Inside the src folder in the catkin_ws you have to create a new folder with and call it with the same title of
the course. According to our example it should be called How_to_use_laser_data_with_ROS.

Now in this folder you can add the packages of each unit, and the package with the tests that will check that
everything is working well.

Example Unit 1 Introduction

You will create a notebook similar to this one.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 11/39

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 12/39

But, is not only the notebook. you have to prepare the unit as a project, in order to have everything ready to
the student, let's see what we did to get this unit finished.

Simulation

You have already the simulation already running, the one you choose before, so don't worry about that.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 13/39

The code

In this case you as a demo that the student just will run to see what he or she could learn, you have to
prepare everything,

starting with the package, the scripts, launch files or configuration of rviz

In this case we create a package an called it unit1, don't forget that this should be in the
catkin_ws/src/How_to_use_laser_data_with_ROS

In []:

cd catkin_ws/src/How_to_use_laser_data_with_ROS

In []:

catkin_create_pkg unit1 rospy

inside we create a folder and call it src and inside it we create a file and call it avoid.py. This is the file

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 14/39

In []:

#!/usr/bin/env python
import rospy
from geometry_msgs.msg import Twist
from sensor_msgs.msg import LaserScan

class mpo_500():
 def __init__(self):
 self.mpo_500_vel_publisher = rospy.Publisher('/cmd_vel', Twist, queue_si
ze=1)
 self.mpo_500_sub = rospy.Subscriber("/sick_front/scan", LaserScan, self.
scan_callback)
 self.cmd = Twist()
 self.a = 0.0
 self.b = 0.0
 self.c= 0.0
 self.ctrl_c = False

 self.rate = rospy.Rate(10) # 10hz
 rospy.on_shutdown(self.shutdownhook)

 def scan_callback(self, msg):
 self.a = msg.ranges[90]
 self.b = msg.ranges[len(msg.ranges)/2]
 self.c = msg.ranges[len(msg.ranges)-90]

 def how_move(self):
 while not self.ctrl_c:
 if self.b >5:
 self.b=5
 if self.a >5:
 self.a=5
 if self.c >5:
 self.c=5

 if self.b >self.a and self.b> self.c :
 self.cmd.linear.x = 0.45
 self.cmd.angular.z = 0.0
 rospy.loginfo("Moving mpo_500 forward!")

 if self.a >self.b and self.a> self.c :
 self.cmd.angular.z = 0.15
 self.cmd.linear.x = 0.09
 rospy.loginfo("Moving mpo_500! left")
 if self.c >self.a and self.c> self.b :
 self.cmd.angular.z = -0.15
 self.cmd.linear.x = 0.09
 rospy.loginfo("Moving mpo_500! right")

 self.mpo_500_vel_publisher.publish(self.cmd)
 #print "a = "+ str(self.a)+" b = "+str(self.b)+" c= "+str(self.c)

 def shutdownhook(self):
 # works better than the rospy.is_shutdown()
 self.ctrl_c = True

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 15/39

if __name__ == '__main__':
 rospy.init_node('mpo_500_test', anonymous=True)
 mpo_500_object = mpo_500()
 try:
 mpo_500_object.how_move()

 except rospy.ROSInterruptException:
 pass

Run this script into the shell and then start rviz and create a configuration in order to see all the topics
needed and show the student how our laser will work, we recommend you to save the configuration in a
folder inside the package of unit 1 with the name rviz.Then we create a launch file with an rviz configuration
inside a new folder called launch. This file will be called introduction

In []:

<launch>
 <!-- My Package launch file -->
 <node pkg="unit1" type="avoid.py" name="mpo_test" output="screen">
 </node>
 <node type="rviz" name="rviz" pkg="rviz" args="-d $(find unit1)/rviz/laser.r
viz" />

</launch>

We know that you know how to do these steps, however, mentioning them is not too much.

Preparing the notebook

As you develop this unit we advise you to take pictures or gif, this will help the notebook to be better
understood and that the student will pay more attention, here are some examples.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 16/39

As an introductory part do not forget to comment that it is all that the student will learn in the course, and in
turn will help you better organize the distribution of the following units

Example content unit (2,3,4)

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 17/39

This is an example of a part of a notebook of the content of unit 2

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 18/39

As the first unit, is not enough to just write the notebook, sometimes you will have to prepare scripts, or
packages or just prove in order to have some images to add in your notebook. let's see

Don't abuse the theory

The theory is very important when introducing new concepts, however, in robot ignite academy we consider
that the practice is fundamental and the best way in which you can learn, that's why we give it so much
importance, learn by doing. Do not hesitate to put concepts on the topics you are addressing, however, you
can not leave something loose, have the student assimilate the knowledge by putting them into practice as
soon as possible

as in the previous chapter, exploit the tools of the academy, you have to get used to the use of the shell, but
it will be better if you can observe graphic tools or the same simulation, a complete practice can help to
settle all the knowledge imparted much better

Remember that the academy has a distribution that allows you to see many things optimally at the same
time, take advantage of this distribution so that the student can observe multiple things at the same time, in
this example, an output that shows the terminal and how it acts in the simulation .

Also due to this distribution remember that the student has listed the shell that you can use, do not forget to
specify in which shell to run a command, so as not to confuse the student in the process

Images of the unit

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 19/39

We also know that a picture is worth a thousand words, so do not forget to include in your notebook various
images that show the process through which the student will go through to complete the unit. This will allow
you to guide the student, and prevent them from getting lost along the way, and give you the assurance that
everything is tested and is on track.

For example here are some pictures that we use in unit 2

One of the most difficult parts is to put yourself in the student's place, as you know the subject you are
teaching, sometimes many steps may seem obvious to us, however, for someone who is just beginning it
will be important to have each procedure step by step if possible.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 20/39

Example Unit 5 project

This is an example of the notebook of the project of the course

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 21/39

Projects that involve a challenge

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 22/39

The projects to be carried out must contain the application of everything learned in the course in such a way
that it represents a challenge present in real situations within the robotics, the student must feel that the
project he is carrying out is interesting, useful, and that he demonstrates How much you have learned during
the course.

It is important to specify the limits and scope of the project, and many times to draw a path so that the
student does not deviate from the objective, however, it should not be given so much help so that the
student feels that self-solvency when managing to face this challenge.

Never forget that the images are worth a thousand words, and when explaining the environment where the
project will be developed or the objective that the robot should meet, explaining through images or videos
can help to better understand the situation and avoid confusion on the part of the student.

4. Create the functionality tests

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 23/39

Every course needs to contain functionality tests that automatically check that the commands you request
the student to do, will work.

How to create a test

Inside catkin_ws/src/[name_of_the_course] create a new package and call it
tests_[name_of_the_course]

In our case, it will be, go to catkin_ws/src/How_to_use_laser_data_with_ROS and create a new package
with tests_How_to_use_laser_data_with_ROS as a name.

So, in the Shell run the following command.

In []:

$ cd ~/catkin_ws/src/How_to_use_laser_data_with_ROS

In []:

$ catkin_create_pkg tests_How_to_use_laser_data_with_ROS rospy

Now you have the test package you have to create some scripts, inside a folder with scripts as a name, that
will test the units that you have already created. But there is a script that all test should have so create a new
script and call it testing_library.sh, now inside it copy the following code.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 24/39

In []:

#! /bin/bash

BLUETEXT="\033[1;34m"
REDTEXT="\033[1;31m"
WHITETEXT="\033[0;37m"
GREENTEXT="\033[1;32m"
RESET_COLOR="\033[0m"

LIB_RESULT=()

LIB_PASSED_TESTS=0
LIB_FAILED_TESTS=0
LIB_TOTAL_TESTS=0

function printTestStarted {
 echo -e "\n\n ${BLUETEXT}Testing Line ${BASH_LINENO[0]} : ${FUNCNAME[1]}${RE
SET_COLOR} \n\n"
}

function testPassed {
 LIB_RESULT+=("${GREENTEXT} Line ${BASH_LINENO[0]} : Passed - ${FUNCNAME[1]}
${RESET_COLOR}")
 ((LIB_PASSED_TESTS++))
 ((LIB_TOTAL_TESTS++))
}

function testFailed {
 LIB_RESULT+=("${REDTEXT} Line ${BASH_LINENO[0]} : Failed - ${FUNCNAME[1]}${R
ESET_COLOR}")
 ((LIB_FAILED_TESTS++))
 ((LIB_TOTAL_TESTS++))
}

function showTestResults {
 echo -e "\n${BASH_SOURCE}:\n"
 for msg in "${LIB_RESULT[@]}"; do
 echo -e $msg;
 done
 echo -e "\n RESULTS: $LIB_PASSED_TESTS tests passed. $LIB_FAILED_TESTS test
s failed. $LIB_TOTAL_TESTS tests total.\n"

}

The rest of the scripts that will test units have an structure that will help ypu make the test easier.

Here is an example of a unit test. This test will look for a specific topic, a topic that is essential to run the unit
examples, in this particular case is to look for the "/sick_front/scan" that will be necessary to use the laser
that is in front of the mpo_500 and the topic "/cmd_vel" that will be necessary to make the robot move.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 25/39

In []:

#!/usr/bin/env bash

function setup_testing_library {
 echo -e "$BLUETEXT\nSetting Library Test env"

 DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)"
 echo $DIR
 source $DIR/testing_library.sh

 echo -e "$BLUETEXT\nSetting Library Test DONE"

 echo -e "$WHITETEXT\n"
}

function ros_env_setup {
 echo "Setting up ROS env"

 . /home/user/.bashrc
 source /opt/ros/kinetic/setup.bash
 source /home/user/catkin_ws/devel/setup.bash

 echo "Setting up ROS env DONE"
}

function launch_unit1_laser_test {

 sleep 5

 local status=0

 expected_topics=(
 "/sick_front/scan"
 "/cmd_vel"

)

 echo "Checking Topics..."${expected_topics[@]}
 for topic in "${expected_topics[@]}"; do
 topics_found=$(rostopic list | grep "$topic" | wc -l)
 if ["$topics_found" -lt 1]; then
 echo -e "$REDTEXT\nTopic $topic not found!"
 echo -e "\n$WHITETEXT"
 status=1
 fi
 done

 sleep 2

 if [$status -eq 0]; then

 echo -e "$BLUETEXT\nTest Passed"
 echo -e "\n$WHITETEXT"

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 26/39

 testPassed
 else
 echo -e "$BLUETEXT\nTest Failed"
 echo -e "\n$WHITETEXT"
 testFailed
 fi

}

function launch_unit1_demo {

 roslaunch unit1 introduction.launch & demo_unit1_pid=$!
 sleep 15
 local status=0
 expected_nodes=(
 "/mpo_test"
)
 for node in "${expected_nodes[@]}"; do
 nodes_found=$(rosnode list | grep "$node" | wc -l)
 if [$nodes_found -lt 1]; then
 kill $demo_unit1_pid
 echo -e "$REDTEXT\n/Checking.., node NOT FOUND"
 echo -e "\n$WHITETEXT"
 echo "Giving time to close everything..."
 testFailed
 status=1
 sleep 15
 fi
 done
 if [$status -eq 0]; then
 kill $demo_unit1_pid
 echo -e "$GREENTEXT\n/Checking..., node FOUND"
 echo -e "\n$WHITETEXT"
 echo "Giving time to close everything..."
 testPassed
 sleep 15
 fi

}

function main {
 set +x
 setup_testing_library
 ros_env_setup
 launch_unit1_laser_test
 launch_unit1_demo
 showTestResults

}

main

echo -e "$GREENTEXT\n Unit0 Test Finished OK"

but what will have every test in common, let's see step by step.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 27/39

In []:

#!/usr/bin/env bash

function setup_testing_library {
 echo -e "$BLUETEXT\nSetting Library Test env"

 DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)"
 echo $DIR
 source $DIR/testing_library.sh

 echo -e "$BLUETEXT\nSetting Library Test DONE"

 echo -e "$WHITETEXT\n"
}

the first part, setting up the testing library, This is a fundamental part for the operation of the test, here is
where we add the library before that show if the test passed or failed. let's see the next part.

In []:

function ros_env_setup {
 echo "Setting up ROS env"

 . /home/user/.bashrc
 source /opt/ros/kinetic/setup.bash
 source /home/user/catkin_ws/devel/setup.bash

 echo "Setting up ROS env DONE"
}

In this part it will setting up the ROS environment, when this test will be running, ROS will not be set up, so
it's too important to add this part to every test that you will create.

in the next part of the test we have the following...

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 28/39

In []:

function launch_unit1_laser_test {

 sleep 5

 local status=0

 expected_topics=(
 "/sick_front/scan"
 "/cmd_vel"

)

 echo "Checking Topics..."${expected_topics[@]}
 for topic in "${expected_topics[@]}"; do
 topics_found=$(rostopic list | grep "$topic" | wc -l)
 if ["$topics_found" -lt 1]; then
 echo -e "$REDTEXT\nTopic $topic not found!"
 echo -e "\n$WHITETEXT"
 status=1
 fi
 done

 sleep 2

 if [$status -eq 0]; then

 echo -e "$BLUETEXT\nTest Passed"
 echo -e "\n$WHITETEXT"
 testPassed
 else
 echo -e "$BLUETEXT\nTest Failed"
 echo -e "\n$WHITETEXT"
 testFailed
 fi

}

This is the function that will try to find the topics that you wrote in the expected_topics, is an specific test for
this unit so could be similar or maybe you will have other tests to check if your unit is working correctly, like
launch some file, or see if the odometry changes, etc.

But this test only shows that the simulation is working and the robot has the topics needed to run the launch
file, but do we have a problem to launch it?, the next part will show us.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 29/39

In []:

function launch_unit1_demo {

 roslaunch unit1 introduction.launch & demo_unit1_pid=$!
 sleep 15
 local status=0
 expected_nodes=(
 "/mpo_test"
)
 for node in "${expected_nodes[@]}"; do
 nodes_found=$(rosnode list | grep "$node" | wc -l)
 if [$nodes_found -lt 1]; then
 kill $demo_unit1_pid
 echo -e "$REDTEXT\n/Checking.., node NOT FOUND"
 echo -e "\n$WHITETEXT"
 echo "Giving time to close everything..."
 testFailed
 status=1
 sleep 15
 fi
 done
 if [$status -eq 0]; then
 kill $demo_unit1_pid
 echo -e "$GREENTEXT\n/Checking..., node FOUND"
 echo -e "\n$WHITETEXT"
 echo "Giving time to close everything..."
 testPassed
 sleep 15
 fi

}

It works similar to the previous part, it will look for a node, that show if the launch file is running well. In this
particular case we gonna look for the node called /mpo_test and if we don't find it, it means that there is a
problem with the launch file or some script that is inside it.

And as you see we have the structure with functions, because is a good way to modify or debug if
something is going wrong. So let's see the main function that will run everything in this test.

In []:

function main {
 set +x
 setup_testing_library
 ros_env_setup
 launch_unit1_laser_test
 launch_unit1_demo
 showTestResults

}

here we have the main function, set +x is to hide the commands that are running in the shell, the rest are
functions that we're calling in order to run every part of the test. And the last part of the test will be the
following.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 30/39

In []:

main

echo -e "$GREENTEXT\n Unit0 Test Finished OK"

that is only running the main function and making an echo that said that the test finished :D

How to run a test

Well, let's create a file inside the
catkin_ws/src/How_to_use_laser_data_with_ROS/tests_how_to_use_laser_data_with_ROS/scripts
and call it unit1_test_script.sh, copy the following code in this file.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 31/39

In []:

#!/usr/bin/env bash

function setup_testing_library {
 echo -e "$BLUETEXT\nSetting Library Test env"

 DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)"
 echo $DIR
 source $DIR/testing_library.sh

 echo -e "$BLUETEXT\nSetting Library Test DONE"

 echo -e "$WHITETEXT\n"
}

function ros_env_setup {
 echo "Setting up ROS env"

 . /home/user/.bashrc
 source /opt/ros/kinetic/setup.bash
 source /home/user/catkin_ws/devel/setup.bash

 echo "Setting up ROS env DONE"
}

function launch_unit1_laser_test {

 sleep 5

 local status=0

 expected_topics=(
 "/sick_front/scan"
 "/cmd_vel"

)

 echo "Checking Topics..."${expected_topics[@]}
 for topic in "${expected_topics[@]}"; do
 topics_found=$(rostopic list | grep "$topic" | wc -l)
 if ["$topics_found" -lt 1]; then
 echo -e "$REDTEXT\nTopic $topic not found!"
 echo -e "\n$WHITETEXT"
 status=1
 fi
 done

 sleep 2

 if [$status -eq 0]; then

 echo -e "$BLUETEXT\nTest Passed"
 echo -e "\n$WHITETEXT"

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 32/39

 testPassed
 else
 echo -e "$BLUETEXT\nTest Failed"
 echo -e "\n$WHITETEXT"
 testFailed
 fi

}

function launch_unit1_demo {

 roslaunch unit1 introduction.launch & demo_unit1_pid=$!
 sleep 15
 local status=0
 expected_nodes=(
 "/mpo_test"
)
 for node in "${expected_nodes[@]}"; do
 nodes_found=$(rosnode list | grep "$node" | wc -l)
 if [$nodes_found -lt 1]; then
 kill $demo_unit1_pid
 echo -e "$REDTEXT\n/Checking.., node NOT FOUND"
 echo -e "\n$WHITETEXT"
 echo "Giving time to close everything..."
 testFailed
 status=1
 sleep 15
 fi
 done
 if [$status -eq 0]; then
 kill $demo_unit1_pid
 echo -e "$GREENTEXT\n/Checking..., node FOUND"
 echo -e "\n$WHITETEXT"
 echo "Giving time to close everything..."
 testPassed
 sleep 15
 fi

}

function main {
 set +x
 setup_testing_library
 ros_env_setup
 launch_unit1_laser_test
 launch_unit1_demo
 showTestResults

}

main

echo -e "$GREENTEXT\n Unit0 Test Finished OK"

This is the test that you saw before as an example.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 33/39

Now run this test in the shell with the following commands. Remember that the simulation has to be
running while the test is running.

In []:

$ cd catkin_ws/src/How_to_use_laser_data_with_ROS/tests_How_to_use_laser_data_wi
th_ROS/scripts/

In []:

$. unit1_test_script.sh

And you will have something similar to the next image.

Where you can see that there are the topics that we want to find. But, does this test really work? let's modify
and try to find a topic that doesn't exist.

in this part of the code.

In []:

expected_topics=(
 "/sick_front/scan"
 "/cmd_vel"

)

add a fake topic, for example:

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 34/39

In []:

expected_topics=(
 "/sick_front/scan"
 "/cmd_vel"
 "/the_true_love"

)

and then run the test again a see what happen.

you will have something similar to the next picture.

As you can see you cannot find the true love, well as a topic you know ;) , and this is how we see that this
test works correctly. But the other part will work? let's modify our launch of unit1 to see if the test detect it.

go to catkin_ws/src/How_to_use_laser_data_with_ROS/unit1/launch/introduction.launch and change it
like the following code

In []:

<launch>
 <!-- My Package launch file -->
 <node pkg="unit1" type="avoid2.py" name="mpo_test" output="screen">
 </node>
 <node type="rviz" name="rviz" pkg="rviz" args="-d $(find unit1)/rviz/laser.r
viz" />

</launch>

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 35/39

now execute the test again, you will see something similar to this

and if you correct the topics and let this last fail, you will have something similar to the next image.

Well now you know how to create test to check if your units is working well.

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 36/39

5. Saving the course

You don't need to save anything. Everything is saved automatically

6. Submit for revision

Once you are happy with the content, you have to submit it to Robot Ignite Academy for revision.

Go to your list of rosjects by clicking on the world icon on the top menu.
On the new tab, go to your course rosject and press the green button Submit
Wait for our revision

7. Once accepted

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 37/39

You will have to transfer the rights of use to us, so we can use the course in the Robot Ignite Academy
You will receive 1.500€ per course. You will need to give us your bank account and personal details, as
well as
You will appear as the author of the course in the Academy course info
We will take charge of maitaining the course
We may translate it to other languages

Additional info
You cannot create a course about any subject. Check the list of subjects we are requesting.
Programming can be done in Python or C++
Language of the courses must be English. Do not worry too much about English errors because we will
proof read your course before publication
Bear in mind that other people can be creating the same course as you, but we can only accept one of
them. In case two courses about the same subjects are summitted, we will select the one with higher
quality according to The Construct criteria.
Courses can be about ROS or about robotics subjects, but all of them must contain practices and
exercises with ROS robots to understand the concepts
You cannot use the course material in other courses of yours or trainings or any other website, book or
else. You are transferring the rights to us, and for that you are getting paid.

8. List of courses required for the academy

About ROS

ROS Control advanced: How to create Harware Interfaces
How to do simulations with Gazebo
Gazebo Plugins How To
How to debug a ROS program
How to use a ROS buildfarm

About ROS2

ROS2 Navigation
ROS2 MoveIt
How to convert ROS 1 programs to ROS2

About Robotics

How to calibrate a robot
Robot Navigation basic algorithms (SLAM, Kalman filters and so)
Robot Kinematics explained
Visual servoing

Mission completed!!

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 38/39

If you liked this video, please support us!

Really... we need your support!!!!

How can you support us?

1. Subscribe to our ROS online academy and become a Master
of ROS Development
Go to our online academy. There is no faster way and funnier to learn ROS because we use the same
method we did here.

We call the 30/70 method

30% of the time learning theory
70% of the time practicing with simulated robots

Check it out at http://robotignite.academy (http://robotignite.academy)

2. Buy one ROS Developers T-shirt!

http://robotignite.academy/

18/02/2020 01_ros_developers_live_class_n82

https://rds.theconstructsim.com/# 39/39

You can buy them at our Teespring area (https://teespring.com/stores/ros-developers
(https://teespring.com/stores/ros-developers))

3. Give us a like in Youtube and subscribe to the channel

Go to our Youtube Channel (https://www.youtube.com/channel/UCt6Lag-vv25fTX3e11mVY1Q
(https://www.youtube.com/channel/UCt6Lag-vv25fTX3e11mVY1Q)) and subscribe (it is free!!!)
Give us a like to this video

KEEP PUSHING YOUR ROS LEARNING WITH
PATIENCE AND GOOD HUMOUR!

Build the future, become a ROS DEVELOPER
In []:

https://teespring.com/stores/ros-developers
https://www.youtube.com/channel/UCt6Lag-vv25fTX3e11mVY1Q

