

ROS2 BASICS IN 5
DAYS

Ricardo Téllez

Alberto Ezquerro

Miguel Angel Rodríguez 

The Construct Sim, Gran Vía 608, 3-D 08007 Barcelona SPAIN,

+34 687 672 123, info@theconstructsim.com www.theconstruct.ai

http://www.theconstruct.ai
http://www.theconstruct.ai

	 	 	 	 	 	 	 	

Written by Miguel Angel Rodríguez, Alberto Ezquerro and Ricardo Téllez

Edited by Yuhong Lin and Ricardo Téllez

Cover design by Lorena Guevara

Learning platform implementation by Ruben Alves

Version 1.0

Copyright © 2019 by The Construct Sim Ltd.

All rights reserved. No part of this publication may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or other

electronic or mechanical methods, without the prior written permission of the publisher,

except in the case of brief quotations embodied in critical reviews and certain other

noncommercial uses permitted by copyright law. For permission requests, write to the

publisher, addressed “Attention: Permissions Coordinator,” at the address below.

The Construct Sim, Gran Vía 608, 3-D 08007 Barcelona SPAIN,

+34 687 672 123, info@theconstructsim.com www.theconstruct.ai

http://www.theconstruct.ai
http://www.theconstruct.ai

	 	 	 	 	 	 	 	

Index

Preface 1

ROSjects 4

Introduction 12

Basic Concepts 18

ROS1 Bridge 36

Topics Part 1 45

Topics Part 2 56

Services Part 1 69

Services Part 2 91

Debugging Tools 112

Final Recommendations 122  

Preface

Preface

This book relies on a series of Gazebo simulations in order to teach you ROS2. You need to have
the simulations running while following the course, if you really want to learn ROS2 in 5 days,
since we heavily rely on them to explain you the complex concepts of ROS.

The simulations

The list of simulations that you need to execute are the following:

MARA

MARA

Repository: https://bitbucket.org/theconstructcore/ros2_mara/src/master/
Kobuki

Kobuki

ROS2 BASICS IN 5 DAYS | 1

Preface

Repository: https://bitbucket.org/theconstructcore/turtlebot/src/master/
WAM

Wam Arm

Repository: https://bitbucket.org/theconstructcore/iri_wam/src/master/
BB-8

BB8

Repository: https://bitbucket.org/theconstructcore/bb8/src/master/

How to launch the simulations

In order to launch the simulations you have two options:

1- Launch the simulations in our ROS Development Studio (ROSDS) using the ROS-
jects we provide. ROSDS is the The Construct web based tool to program ROS robots online. It
is recommended that you use this option since it is very simple and requires no installation in your
computer. Hence, you can use any type of computer to follow this book (Windows, Linux or Mac).
Additionally, free accounts are available. You just need to paste the ROSject link we will provide
to you in each Unit to a browser’s URL, and you will automatically have the simulation prepared in
your ROSDS workspace.

ROS2 BASICS IN 5 DAYS | 2

Preface

2- Launch the simulations in your own computer. This option requires that you have a
running Linux computer with ROS2 and Gazebo simulator installed in your computer. We do not
cover those steps (but more information below)

1. Launch the simulation using ROSjects

You will find a complete guide about ROSjects and how to open them in the next Chapter of the
Book.

2. Launch the simulation in your own computer

We do not recommend this option because it requires you to know about ROS concepts that you
still don’t have (because you are going to learn them in this book). However, we provide this
option for more advanced users who more or less know what they are doing. If that is not your
case, use the option of launching the simulations on the ROSDS, which requires no previous
knowledge of ROS.

For this option you will need to:

1- Download the simulations from the repository, following the links provided above.

2- Install and set up a ROS2/ROS1 environment in your PC. The instructions to do that are
explained in the official page of ROS (www.ros.org). Bear in mind that the simulations you
downloaded are supported for ROS2 Crystal / ROS Melodic with Gazebo 9. Any other setup
might not compile or work correctly.

Consultations

If you have any doubts while doing the Course, or you get really sucked in some of the exercises,
you can ask for support in our forum:

http://forum.theconstructsim.com

ROS2 BASICS IN 5 DAYS | 3

ROSjects

ROSjects

Throughout the whole book, you’re going to find a ROSject at the beginning of each Chapter.
With these ROSjects, you are going to be able to easily have access to all the material you’ll need
for each Chapter.

What is a ROSject?

A ROSject is, basically, a ROS project in the ROS Development Studio (ROSDS). ROSjects can
easily be shared using a link. By clicking on the link, or copying it to the URL of your web browser,
you will have a copy of the specific ROSject in your ROSDS workspace. This means you will have
instant access to the ROSject. Also, you will be able to modify it as you wish.

How to open a ROSject?

At the beginning of each Chapter, you will see a section like this one:

ROSject section

As you can see, it contains 3 things:

• ROSject Link: Link to get the ROSject

• Robot: Name of the robot to launch in the Simulations list at ROSDS.

ROS2 BASICS IN 5 DAYS | 4

ROSjects

Step 1

Log into the ROSDS platform at http://rosds.online . If you don’t have an account, you can
create one for free. Once you log in, you will see an screen like the below one.

ROSjects Empty List

At this point you don’t have any ROSject yet. So let’s get one!

Step 2

Copy the ROSject Link to your web browser. Once you have copied the URL to your web
browser, you will automatically have that ROSject available in your workspace.

ROSject Link

ROS2 BASICS IN 5 DAYS | 5

ROSjects

ROSject in ROSDS workspace

Step 3

Open the ROSject. You can open the ROSject by clicking on the Open ROSject button.

ROS2 BASICS IN 5 DAYS | 6

ROSjects

Open ROSject

You will then go to a loading screen like the below one.

After a few seconds, you will get an environment like the below one.

ROSDS Environment

Contents of the ROSjects

The ROSjects that are available for each chapter of the book will basically contain 2 things:

ROS2 BASICS IN 5 DAYS | 7

ROSjects

• The Gazebo simulation used for the Chapter
• All the scripts and files used for the Chapter

In order to open the simulation, follow the next steps:

Step 1

In the Simulations menu, you will get a list of all the robots you can launch under RDS Robots.

Simulations menu

Step 2

Within the list, select the Robot specified at the ROSject section of the chapter.

ROS2 BASICS IN 5 DAYS | 8

ROSjects

RDS Robots list

In order to see all the files related to the chapter, follow the next steps:

ROS2 BASICS IN 5 DAYS | 9

ROSjects

Step 1

In the Tools menu, click on the IDE option. An IDE will appear in your workspace.

Tools menu

Step 2

You will find all the files inside the ros2_ws workspace. There, you have a ROS2 package con-
taining all the files related to the chapter. This package will always follow the following name
convention: **<unitX>_scripts**

ROS2 BASICS IN 5 DAYS | 10

ROSjects

IDE workspace tree

And that’s it! Now just enjoy ROSDS and push your ROS learning.

Also, you can find more information and videotutorials about ROSDS here:
https://www.youtube.com/watch?v=ELfRmuqgxns&list=PLK0b4e05LnzYGvX6EJN1gOQEl6aa3uyKS
If you have any doubt regarding ROSDS, don’t hesitate in contacting us to: feed-
back@theconstructsim.com

ROS2 BASICS IN 5 DAYS | 11

Unit 0. Introduction to the Course

ROS2 BASICS IN 5 DAYS

Unit 0: Introduction to the Course

• ROSject Link: https://bit.ly/2TfBPxU

• Robot: MARA

NOTE: You will find instructions on how to launch this simulation in the Jupyter Notebook of the
ROSject.

SUMMARY
Estimated time to completion: 10 minutes This unit is an introduction to the ROS2 Basics in
5 Days Course. You’ll have a quick preview of the contents you are going to cover during the
course, and you will also view a practical demo.

ROS2 BASICS IN 5 DAYS | 12

0 - Introduction to the Course

What’s this course about?

Since ROS started back in 2007, a lot has changed in the robotics world and, with it, in the ROS
community. What started as a “small” project has become the main tool for robot developers all
around the world. This means that ROS is being pushed to its limits every day. With all this in
mind, and in order to accomplish all the new challenges that robotics evolution is presenting, ROS
is now ready to evolve. And this evolution is none other than ROS2.

The goal of ROS2 is to bring ROS to a whole new level, maintaining all the awesome fea-
tures that ROS already provides, and adding many new functionalities that will make sure that
ROS2 can fulfill all the new challenges that robotics will bring in the years to come.

So, the goal of this course will be to introduce you to the basic concepts that you need to
know in order to start working with ROS2. During the course, we will try to bypass all the
unnecessary noise and focus on the main things you need to know in order to learn to use ROS2.
And in particular, we will focus on practice. So. . . what do you say? Are you in?

Do you want to have a taste?

With the proper introductions made, it is time to actually start. And. . . as we always do in the
Robot Ignite Academy, let’s start with practice! In the following example, you will be using a
simulated MARA robot, developed by Erle Robotics, which is running in ROS2. So. . . let’s go!

Demo 1.1

a) First of all, you will need to source ROS2 in order to be able to execute ROS2 commands.

Execute in WebShell #1

[]: source /opt/ros/crystal/setup.bash

[]: source /home/simulations/ros2_sims_ws/install/setup.bash

b) Now, let’s execute a simple ROS2 program that will execute a motion on our simulated MARA
robot.

Execute in WebShell #1

[]: ros2 run mara_minimal_publisher mara_minimal_publisher

You should now see the robot moving the arm towards the ground.

ROS2 BASICS IN 5 DAYS | 13

0 - Introduction to the Course

In this example, you’ve basically launched a ROS2 program. In this program, you are publishing
some messages into certain topics, which tell the arm to move down. Don’t worry if you don’t
know what I’m talking about yet! I promise you that by the end of this course, you will perfectly
understand what is going on behind the scenes!

What will you learn with this course?

Basically, during this course, you will address the following topics:

• Basic Concepts of ROS2: Packages, Launch Files, Nodes, Client Libraries, etc. . .
• How to work with ROS1 Bridge
• How Topics work: Publishers and Subscribers
• How Services work: Clients and Servers
• Basic Debugging Tools: Logging system, RViz2.

How will you learn all this?

You will learn through hands-on experience from day one! During the course, you will work with
the following simulations.

MARA robot:

MARA Robot

Turtlebot 2:

ROS2 BASICS IN 5 DAYS | 14

0 - Introduction to the Course

Turtlebot 2

BB8:

BB-8

Wam Arm:

ROS2 BASICS IN 5 DAYS | 15

0 - Introduction to the Course

WAM Arm

Minimum requirements for the course

In order to be able to fully understand the contents of this course, it is highly recommended that
you have the following knowledge:

• Basic C++.
• Basic Unix shell knowledge.

Special Thanks

• To our friends at Erle Robotics, who have shared with us their amazing ROS2 MARA Gazebo
simulation, one of the first simulations fully available in ROS2.

Erle Robotics Official Page: https://acutronicrobotics.com/
ROS2 MARA Simulation: https://github.com/AcutronicRobotics/MARA

Erle Robotics

ROS2 BASICS IN 5 DAYS | 16

0 - Introduction to the Course

• This course also wouldn’t have been possible without the knowledge and work of the ROS
Community, OSRF, and Gazebo Team.

ROS

Gazebo

ROS2 BASICS IN 5 DAYS | 17

Unit 1. Basic Concepts

ROS2 BASICS IN 5 DAYS

Unit 1: Basic Concepts

Kobuki

• ROSject Link: https://bit.ly/2CJRBtT

• Robot: Turtlebot 2

Estimated time to completion: 1.5 hours Simulated robot: Turtlebot 2 What will you learn with this
unit?

• How to structure and launch ROS2 programs (packages and launch files)
• How to create basic ROS2 programs (C++ based)
• Basic ROS2 concepts: Nodes, Client Libraries, etc.

ROS2 BASICS IN 5 DAYS | 18

1 - Basic Concepts

Kobuki Robot

What is ROS2?

This is probably the question that has brought you all here. Well, let me tell you that you are still
not prepared to understand the answer to this question, so. . . let’s get some work done first.

Move a Robot with ROS2

On the right corner of the screen, you have your first simulated robot: the Turtlebot 3 robot against
a large wall.

Robot Ignite Environment

ROS2 BASICS IN 5 DAYS | 19

1 - Basic Concepts

Let’s move that robot!
How do you move the Turtlebot?

The easiest way is by executing an existing ROS2 program to control the robot. A ROS2
program is executed by using some special files called executables, which are generated on
compilation. You will see more on compilation later on in the chapter.

Since a previously-made ROS2 program (executable) already exists that allows you to move the
robot using the keyboard, let’s launch that ROS2 program to teleoperate the robot.

Example 1.1
Execute the following commands in WebShell #1 in order to start the ROS1 Bridge.

Execute in WebShell #1

[]: source ~/.bashrc_bridge

[]: export ROS_MASTER_URI=http://localhost:11311

[]: ros2 run ros1_bridge dynamic_bridge

Now, execute the following commands in WebShell #2
Execute in WebShell #2

[]: source /opt/ros/crystal/setup.bash

[]: ros2 run teleop_twist_keyboard teleop_twist_keyboard

WebShell #1 Output

[]: Control Your Turtlebot!

Moving around:

u i o
j k l
m , .

q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
space key, k : force stop
anything else : stop smoothly

CTRL-C to quit

Now, you can use the keys indicated in the WebShell Output to move the robot around. The basic
keys are the following:

ROS2 BASICS IN 5 DAYS | 20

1 - Basic Concepts

Keys to control Kobuki Robot

Try it!! When you’re done, you can Ctrl+C to stop the execution of the program.

ros2 is the keyword used for all the ROS2 commands. For launching programs, you will
basically have two options:

• Launch the ROS2 program by directly running the executable file.

• Launch the ROS2 program by starting a launch file.

For directly running an executable file, the structure of the command goes as follows:

[]: ros2 run <package_name> <executable_file>

As you can see, that command has two parameters: the first one is the name of the package that
contains the executable file, and the second one is the name of the executable file itself (which is
stored inside the package).

For using a launch file, the structure of the command would go as follows:

[]: ros2 launch <package_name> <launch_file>

As you can see, this command also has two parameters: the first one is the name of the package
that contains the launch file, and the second one is the name of the launch file itself (which is
stored inside the package).

ROS1 Bridge

In the previous Demo, you had to start a ROS1 Bridge node in order to be able to control the
robot. But. . . why?

ROS2 BASICS IN 5 DAYS | 21

1 - Basic Concepts

As you already know, ROS2 is very young in comparison with its older brother ROS1. Be-
cause of this, there are still many packages and simulations that are not yet available for ROS2.
Thankfully, we have the ROS1 Bridge to fill in these gaps.

Basically, this package provides a network bridge that enables the exchange of messages
between ROS1 and ROS2. This way, we are able to use packages or simulations that are made
for ROS1, in ROS2.

Anyway, don’t worry too much about this right now. You will learn more about the ROS1
Bridge in the following chapter.

Now. . . what’s a package?

ROS uses packages to organize its programs. You can think of a package as all the files that
a specific ROS program contains; all its cpp files, python files, configuration files, compilation
files, launch files, and parameters files.

All those files in the package are organized with the following structure:

• launch folder: Contains launch files
• src folder: Source files (cpp, python)
• CMakeLists.txt: List of cmake rules for compilation
• package.xml: Package information and dependencies

Every ROS program that you want to execute is organized in a package. Every ROS program that
you create will have to be organized in a package. Packages are the main organization system of
ROS programs.

And. . . what’s a launch file?

We’ve seen that ROS2 can use launch files to execute programs. But. . . how do they work? Let’s
have a look.

Example 1.2
In Example 1.1, you used the command ros2 run in order to start the teleop_twist_keyboard
node. But you’ve also seen that you can start nodes by using what we know as launch files.

But. . . how do they work? Let’s have a look at an example. For instance, if we wanted to
start the teleop_twist_keyboard node using a launch file, we would have to create something
similar to the following Python script.

teleop_twist_keyboard.launch.py

ROS2 BASICS IN 5 DAYS | 22

1 - Basic Concepts

[]: """Launch a talker and a listener."""

from launch import LaunchDescription
import launch_ros.actions

def generate_launch_description():
return LaunchDescription([

launch_ros.actions.Node(
package='teleop_twist_keyboard',

node_executable='teleop_twist_keyboard', output='screen'),
])

As you can see, the launch file structure is quite simple. First, we import some modules from the
launch and launch_ros packages.

[]: from launch import LaunchDescription
import launch_ros.actions

Next, we define a function that will return a LaunchDescription object.

[]: def generate_launch_description():
return LaunchDescription([

launch_ros.actions.Node(
package='teleop_twist_keyboard',

node_executable='teleop_twist_keyboard', output='screen'),
])

Within the LaunchDescription object, we generate a Node where we will fill up the following
parameters:

1. package=‘package_name’ # Name of the package that contains the code of the ROS pro-
gram to execute

2. node_executable=‘cpp_executable_name’ # Name of the cpp executable file that we want
to execute

3. output=‘type_of_output’ # Through which channel you will print the output of the program

Create a package

Until now we’ve been checking the structure of an already-built package. . . but now, let’s create
one ourselves.

When we want to create packages, we need to work in a very specific ROS workspace,
which is known as ROS workspace. The ROS workspace is the directory in your hard disk

ROS2 BASICS IN 5 DAYS | 23

1 - Basic Concepts

where your own ROS2 packages must reside in order to be usable by ROS2. Usually, the ROS
workspace directory is called ros2_ws.

Example 1.3
First of all, let’s source ROS2 on our Shell, so that we can use the ROS2 command line tools.

Execute in WebShell #1

[]: source /opt/ros/crystal/setup.bash

Now, go to the ros2_ws in your webshell.

Execute in WebShell #1

[]: cd ~/ros2_ws/
pwd

WebShell #1 Output

[]: user ~ $ pwd
/home/user/ros2_ws

Inside this workspace, there is a directory called src. This folder will contain all the pack-
ages created. Every time you want to create a package, you have to be in this directory
(ros2_ws/src).Type into your webshell cd src in order to move to the source directory.

Execute in WebShell #1

[]: cd src

Now, we are ready to create our first package! In order to create a package, type into your
webshell:

Execute in WebShell #1

[]: ros2 pkg create my_package --build-type ament_cmake --dependencies
rclcpp

This will create inside our “src” directory a new package with some files in it. We’ll check this later.
Now, let’s see how this command is built:

[]: ros2 pkg create <package_name> --build-type ament_cmake --dependencies
<package_dependecies>

The package_name is the name of the package you want to create, and the pack-
age_dependencies are the names of other ROS packages that your package depends
on.

ROS2 BASICS IN 5 DAYS | 24

1 - Basic Concepts

Example 1.4
In order to check that our package has been created successfully, we can use some ROS
commands related to packages. For example, let’s type:

Execute in WebShell #1

[]: ros2 pkg list
ros2 pkg list | grep my_package

ros2 pkg list: Gives you a list with all of the packages in your ROS system. ros2 pkg list | grep
my_package: Filters, from all of the packages located in the ROS system, the package named
my_package. You can also see the package created and its contents by just opening it through
the IDE (similar to {Figure 1.1})
Fig.1.1 - IDE created package my_package

IDE created package

So. . . what’s happening? Can’t see your package on the list? Well, don’t worry. That’s totally
normal. In order to see your new package on the package list, you will need to compile it first. So,
let’s move on to the next section to see how to compile a package.

Compile a package

When you create a package, you will need to compile it in order to make it work. The command
used by ROS2 to compile is the next one:

[]: colcon build --symlink-install

This command will compile your whole src directory, and it needs to be issued in your ros2_ws
directory in order to work. This is MANDATORY.

Example 1.5
Go to your ros2_ws directory and compile your source folder. You can do this by typing:

Execute in WebShell #1

[]: cd ~/ros2_ws
colcon build --symlink-install

ROS2 BASICS IN 5 DAYS | 25

1 - Basic Concepts

Sometimes (for example, in large projects) you will not want to compile all of your packages, but
just the one(s) where you’ve made changes. You can do this with the following command:

[]: colcon build --symlink-install --packages-select <package_name>

This command will only compile the packages specified and their dependencies.

Try to compile your package named my_package with this command.

Execute in WebShell #1

[]: colcon build --symlink-install --packages-select my_package

When compilation ends, you will need to source your workspace. You can do that with the
following command:

Execute in WebShell #1

[]: source ~/ros2_ws/install/setup.bash

My first ROS program

At this point, you should have your first package created. . . but now, you need to do something
with it! Let’s do our first ROS2 program!

Example 1.6
1- Create a C++ file that will be executed in the src directory in my_package. For this exercise,
just copy this simple C++ code simple.cpp. You can create it directly by RIGHT clicking on the
IDE on the src directory of your package and selecting New File,.

New File Creation

A new Tab should have appeared on the IDE with empty content. Copy the content of simple.cpp
into the new file. Finally, press Ctrl-S to save your file with the changes. The Gray Dot in the Tab
will go from Gray to Green (see pictures below). Also a message will appear saying All changes
saved.

ROS2 BASICS IN 5 DAYS | 26

1 - Basic Concepts

Unsaved

Saved

2- Create a launch directory inside the package named my_package {Example 1.4}.

Execute in WebShell #1

[]: cd ~/ros2_ws/src/my_package
mkdir launch

You can also create it through the IDE.

3- Create a new launch file inside the launch directory.

Execute in WebShell #1

[]: touch launch/my_package_launch_file.launch.py
chmod +x my_package_launch_file.launch.py

You can also create it through the IDE.

4- Fill this launch file as we’ve previously seen in this course {Example 1.3}.

The final launch should be something similar to this: my_package_launch_file.launch
5- Modify the CMakeLists.txt file to generate an executable from the C++ file you have just
created.

Note: This is something that is required when working in ROS with C++. When you fin-
ish this exercise, you’ll learn more about this subject. For now, just follow the instructions below.

In the Build section of your CMakeLists.txt file, add the following lines to your CMake-
Lists.txt file, right above the ament_package() line.

ROS2 BASICS IN 5 DAYS | 27

1 - Basic Concepts

[]: add_executable(simple_node src/simple.cpp)
ament_target_dependencies(simple_node rclcpp)

install(TARGETS
simple_node
DESTINATION lib/${PROJECT_NAME}

)

install(DIRECTORY
launch
DESTINATION share/${PROJECT_NAME}/

)

CMakeLists.txt

6- Compile your package as explained previously.

Execute in WebShell #1

[]: cd ~/ros2_ws;
colcon build --symlink-install
source ~/ros2_ws/install/setup.bash

If everything goes fine, you should get something like this as output:

colcon build output

ROS2 BASICS IN 5 DAYS | 28

1 - Basic Concepts

7- Finally, execute the roslaunch command in the WebShell to launch your program.

Execute in WebShell #1

[]: ros2 launch my_package my_package_launch_file.launch.py

Expected Result for Example 1.6
You should see Leia’s quote among the output of the roslaunch command.

WebShell #1 Output

[]: user:~/ros2_ws$ ros2 launch my_package
my_package_launch_file.launch.py
[INFO] [launch]: process[simple_node-1]: started with pid [29595]
[INFO] [ObiWan]: Help me Obi-Wan Kenobi, you're my only hope
[INFO] [launch]: process[simple_node-1]: process has finished cleanly

C++ Program {1.1a-cpp}: simple.cpp

[]: #include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
auto node = rclcpp::Node::make_shared("ObiWan");

RCLCPP_INFO(node->get_logger(), "Help me Obi-Wan Kenobi, you're my
only hope");

rclcpp::shutdown();
return 0;

}

You may be wondering what this whole code means, right? Well, let’s explain it line by line:

[]: // Here we are including all the headers necessary to use the most
common public pieces of the ROS system
// In this case we use the rclcpp client library, which provides a C++
Api for interacting with ROS
// Always, when we create a new C++ file, we will need to add this
include:
#include "rclcpp/rclcpp.hpp"

// We start the main C++ program
int main(int argc, char * argv[])
{

// We initiate the rclcpp client library

ROS2 BASICS IN 5 DAYS | 29

1 - Basic Concepts

rclcpp::init(argc, argv);
// We initiate a ROS node called ObiWan
auto node = rclcpp::Node::make_shared("ObiWan");

// This is the same as a print in ROS
RCLCPP_INFO(node->get_logger(), "Help me Obi-Wan Kenobi, you're my

only hope");

// We shutdown the rclcpp client library
rclcpp::shutdown();
// We end our program
return 0;

}

NOTE: If you create your C++ file from the shell, it may happen that it’s created without execution
permissions. If this happens, ROS won’t be able to find it. If this is the case for you, you can give
execution permissions to the file by typing the next command: chmod +x name_of_the_file.cpp
Launch File {1.1-l}: my_package_launch_file.launch.py
You should have something similar to this in your my_package_launch_file.launch:

Note: Keep in mind that in the example below, the C++ executable name in the attribute
node_executable is named simple_node. So, if you have named your C++ executable with a
different name, this will be different.

[]: """Launch a talker and a listener."""

from launch import LaunchDescription
import launch_ros.actions

def generate_launch_description():
return LaunchDescription([

launch_ros.actions.Node(
package='my_package', node_executable='simple_node',

output='screen'),
])

Modifying the CMakeLists.txt file

When coding with C++, it will be necessary to create binaries (executables) of your programs in
order to be able to execute them. For that, you will need to modify the CMakeLists.txt file of your
package, in order to indicate that you want to create an executable of your C++ file.

To do this, you need to add some lines into your CMakeLists.txt file. In fact, these lines
are already in the file, but they are commented. You can also find them, and uncomment them.
Whichever you prefer.

ROS2 BASICS IN 5 DAYS | 30

1 - Basic Concepts

In the previous exercise, you had the following lines:

[]: add_executable(simple_node src/simple.cpp)
ament_target_dependencies(simple_node rclcpp)

install(TARGETS
simple_node
DESTINATION lib/${PROJECT_NAME}

)

Install launch files.

install(DIRECTORY
launch
DESTINATION share/${PROJECT_NAME}/

)

But. . . what do these lines of code do exactly? Well, basically they do the following:

[]: add_executable(simple_node src/simple.cpp)

This line generates an executable from the simple.cpp file, which is in the src folder of your
package. This executable will be called simple_node.

[]: ament_target_dependencies(simple_node rclcpp)

This line adds all the ament target dependencies of the executable.

[]: install(TARGETS
simple_node
DESTINATION lib/${PROJECT_NAME}

)

This snippet will currently install our node (simple_node) into our install space inside the ROS2
workspace. So, this executable will be placed into the package directory of your install
space, which is located, by default, at ~/ros2_ws/install/<package name>/lib.

[]: install(DIRECTORY
launch
DESTINATION share/${PROJECT_NAME}/

)

Finally, this code snippet will install the launch files into tne install space so that they can be
executed using the ros2 launch expression.

ROS2 BASICS IN 5 DAYS | 31

1 - Basic Concepts

ROS Nodes

You’ve initiated a node in the previous code but. . . what’s a node? ROS nodes are basically
programs made in ROS. The ROS command to see what nodes are actually running in a computer
is:

[]: ros2 node list

Example 1.7
Type this command in a new shell and look for the node you’ve just initiated (ObiWan).

Execute in WebShell #1

[]: ros2 node list

You can’t find it? I know you can’t. That’s because the node is killed when the C++ program ends.
Let’s change that.

Update your C++ file simple.cpp with the following code:

C++ Program {1.1b-cpp}: simple_loop.cpp

[]: #include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
auto node = rclcpp::Node::make_shared("ObiWan");
// We create a Rate object of 2Hz
rclcpp::WallRate loop_rate(2);

// Endless loop until Ctrl + C
while (rclcpp::ok()) {

RCLCPP_INFO(node->get_logger(), "Help me Obi-Wan Kenobi, you're my
only hope");

rclcpp::spin_some(node);
// We sleep the needed time to maintain the Rate fixed above
loop_rate.sleep();

}
rclcpp::shutdown();
return 0;

}
// This program creates an endless loop that repeats itself 2 times
per second (2Hz) until somebody presses Ctrl + C
// in the Shell

ROS2 BASICS IN 5 DAYS | 32

1 - Basic Concepts

Launch your program again using the roslaunch command.

Execute in WebShell #1

[]: ros2 launch my_package my_package_launch_file.launch.py

Now, try again in another WebShell:

Execute in WebShell #2

[]: source /opt/ros/crystal/setup.bash

[]: ros2 node list

Can you see your node now?

WebShell #1 Output

[]: user:~$ ros2 node list
/launch_ros
/ObiWan

In order to see information about our node, we can use the next command:

[]: ros2 node info /ObiWan

This command will show us information about all the connections that our Node has.

Execute in WebShell #1

[]: ros2 node info /ObiWan

WebShell #1 Output

[]: user:~$ ros2 node info /ObiWan
/ObiWan

Subscribers:
/parameter_events: rcl_interfaces/ParameterEvent

Publishers:
/parameter_events: rcl_interfaces/ParameterEvent

Services:
/ObiWan/describe_parameters: rcl_interfaces/DescribeParameters
/ObiWan/get_parameter_types: rcl_interfaces/GetParameterTypes
/ObiWan/get_parameters: rcl_interfaces/GetParameters
/ObiWan/list_parameters: rcl_interfaces/ListParameters
/ObiWan/set_parameters: rcl_interfaces/SetParameters
/ObiWan/set_parameters_atomically:

rcl_interfaces/SetParametersAtomically

For now, don’t worry about the output of the command. You will understand more while going
through the next tutorial.

ROS2 BASICS IN 5 DAYS | 33

1 - Basic Concepts

Client Libraries

In the previous exercise, you were using the rclcpp client library. But what is this exactly? Basi-
cally, ROS client libraries allow nodes written in different programming languages to communicate.
There is a core ROS client library (RCL) that implements the common functionality needed for
the ROS APIs of different languages. This makes it so that language-specific client libraries are
easier to write and they have more consistent behavior.

The following client libraries are currently maintained by the ROS2 team:

• rclcpp = C++ client library
• rclpy = Python client library

Additionally, other client libraries have been developed by the ROS community. You can check out
the following article for more details: https://index.ros.org/doc/ros2/ROS-2-Client-Libraries/

Environment Variables

ROS uses a set of Linux system environment variables in order to work properly. You can check
these variables by typing:

[]: export | grep ROS

NOTE 1: Depending on your computer, it could happen that you can’t type the | symbol directly
in your webshell. If that’s the case, just copy/paste the command by RIGHT-CLICKING on the
WebShell and select Paste from Browser. This feature will allow you to write anything on your
webshell, no matter what your computer configuration is.

[]: user:~$ export | grep ROS
declare -x ROS_DISTRO="crystal"
declare -x ROS_IP="10.8.0.1"
declare -x ROS_MASTER_URI="http://10.8.0.1:11311"
declare -x ROS_PYTHON_VERSION="3"
declare -x ROS_VERSION="2"

The most important variables are the ROS_MASTER_URI and the ROS_DISTRO.

[]: ROS_MASTER_URI -> Contains the url where the ROS Core is being
executed. Usually, your own computer (localhost).
ROS_DISTRO -> Contains the ROS distribution that you are currently
using.

ROS2 BASICS IN 5 DAYS | 34

1 - Basic Concepts

NOTE: Since ROS2 doesn’t has a roscore, the ROS_MASTER_URI is used here to point to the
roscore running in ROS1, when communicating to it using the ROS1 Bridge.

NOTE 2: At the platform you are using for this course, we have created an alias to display
the environment variables of ROS. This alias is rosenv. By typing this on your shell, you’ll get a
list of ROS environment variables. It is important that you know that this is not an official ROS
command, so you can only use it while working on this platform.

So now. . . what is ROS2?

ROS2 is basically the framework that allows us to do all that we showed you throughout this
chapter. It provides the background to manage all these processes and communications between
them. . . and much, much more!! In this tutorial, you’ve just scratched the surface of ROS2, the
basic concepts. ROS2 is an extremely powerful tool. If you dive into our courses, you’ll learn
much more about ROS2 and you’ll find yourself able to do almost anything with your robots!

ROS2 BASICS IN 5 DAYS | 35

Unit 2. ROS1 Bridge

ROS2 BASICS IN 5 DAYS

• ROSject Link: https://bit.ly/2B5pnK4

• Robot: BB-8

Unit 2: ROS1 Bridge

Estimated time to completion: 6 hours What will you learn with this unit?

• Setup of ROS1 Bridge
• Basic Examples
• Custom Message Mapping
• Exercises with simulation

Setup of ROS1 Bridge

At the time of the creation of this course notebook, ROS2 Crystal was not a 100% replacement
for ROS1, and therefore, it will have to coexists with ROS1 systems. So, we need some method
to connect ROS2 systems with ROS1 systems. This is particularly true in Gazebo Simulations.
Although there are Gazebo-Simulations already prepared for ROS2, like the MARA Robot Arm
that you will use in this course, made by the team of ErleRobotics, there is not much else out
there. So, you need some way of launching already existing simulations using ROS1, but able to
communicate with ROS2.

This is where ROS1-Bridge comes into play.

Ros1-Bridge connects messages from ROS1 and ROS2. The prebuilt version supports
some messages, and most of the ROS core messages used.

This mapping between messages from ROS1-ROS2 is defined at compile time
through yaml files exported in the package.xml. More info on this Mapping Topic:
https://github.com/ros2/ros1_bridge/blob/master/doc/index.rst
But in this course, we will concentrate on using only the default messages for the time being.

ROS2 BASICS IN 5 DAYS | 36

2 - ROS1 Bridge

ROS1-Bridge sourcing

So, for this first example, we are going to just reproduce the standard tests for ROS1-Bridge. This
way, you will get the hang of how this system works.

The first thing to do is to create a custom bridge bashrc configuration to be able to source
both the ROS1 and ROS2 systems that ROS1-Bridge needs.

In this case, you already have it created in your workspace.

Execute in WebShell #1

[]: # Check a Custom bahsrc_bridge

cat /home/user/.bashrc_bridge

Setup {4.1}: .bashrc_bridge

[]: source /opt/ros/melodic/setup.bash
source /opt/ros/crystal/local_setup.bash

source /home/user/catkin_ws/devel/setup.bash
source /home/user/ros2_ws/install/local_setup.bash

ROS1-Bridge is based on several concepts, but the most basic one is the fact that the shell where
you launch ROS1-Bridge has to have sourced, all the paths to all the messages that it has access
to. This means that it has to be able to reach both ROS1 and ROS2 message definitions. That’s
why both melodic and crystal are sourced, to be able to reach ROS1 and ROS2 system installed
packages. And also, it has to be able to reach any workspace that you might use. In this case, the
catkin_ws for ROS1 and ros2_ws for ROS2.

Once ros1_bridge is correctly sourced, it basically checks if the topics and services in ROS1 and
ROS2 have the same names, message types, and so on. If so, it connects the corresponding top-
ics and services. If you want to know in more depth how this correspondance is done, please check
out the official documentation here: https://github.com/ros2/ros1_bridge/blob/master/doc/index.rst

Basic Examples

Here we will perform the basic classical ROS1-Bridge example tests, to get the hang of ROS1-
Bridge.

Important Note: Please start from fresh webshells to avoid any past sourcing. This is
done by just going to another unit and back to this one, to reset all the webshells.

We will use two extra bashrc_rosX, one each for ROS1 and ROS2. Again, these files are
already created for you, but we show you just in case you execute this someplace where there
is none.

Setup {4.1}: .bashrc_ros1

ROS2 BASICS IN 5 DAYS | 37

2 - ROS1 Bridge

[]: # ROS1

export ROS_DISTRO=melodic
source /opt/ros/$ROS_DISTRO/setup.bash
source /home/user/catkin_ws/devel/setup.bash

Setup {4.1}: .bashrc_ros2

[]: # ROS2

export ROS_DISTRO=crystal
source /opt/ros/$ROS_DISTRO/setup.bash
source /home/user/ros2_ws/install/local_setup.bash

Example 1a: Run the bridge and the example talker and listener ROS1->ROS2

For this, you will need three different webshells, which we will name (for future reference):

• WebShell 1: ROS1-Bridge
• WebShell 2: Talker ROS1
• WebShell 3: Listener ROS2

NOTE: In Robot Ignite Academy, you already have a roscore running, just because you have
gazebo for ROS1 in the simulations that use ROS1, so you don’t need to launch it. But in an
empty local computer, you would need to do it, sourcing ROS1 paths.

Execute in WebShell #1: ROS1-Bridge
We launch ROS1-Bridge, sourcing for both ROS1 and ROS2, using the provided .bashrc_bridge.

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2: Talker ROS1

[]: . /home/user/.bashrc_ros1
rosrun rospy_tutorials talker

Execute in WebShell #3: Listener ROS2

[]: . /home/user/.bashrc_ros2
ros2 run demo_nodes_cpp listener

WebShell #1 Output: ROS1-Bridge

[]: created 1to2 bridge for topic '/chatter' with ROS 1 type
'std_msgs/String' and ROS 2 type 'std_msgs/String'
[INFO] [ros1_bridge]: Passing message from ROS 1 std_msgs/String to
ROS 2 std_msgs/String (showing msg only once per type)
removed 1to2 bridge for topic '/chatter'

ROS2 BASICS IN 5 DAYS | 38

2 - ROS1 Bridge

WebShell #2 Output: Talker ROS1

[]: [INFO] [1544551384.459151]: hello world 1544551384.46
[INFO] [1544551384.559150]: hello world 1544551384.56
[INFO] [1544551384.659144]: hello world 1544551384.66

WebShell #3 Output: Listener ROS2

[]: [INFO] [listener]: I heard: [hello world 1544551383.66]
[INFO] [listener]: I heard: [hello world 1544551383.76]
[INFO] [listener]: I heard: [hello world 1544551383.86]

Example 1b: Run the bridge and the example talker and listener ROS2->ROS1

For this you will need three different webshells, which we will name (for future reference):

• WebShell 1: ROS1-Bridge
• WebShell 2: Listener ROS1
• WebShell 3: Talker ROS2

Execute in WebShell #1: ROS1-Bridge

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2: Listener ROS1

[]: . /home/user/.bashrc_ros1
rosrun roscpp_tutorials listener

Execute in WebShell #3: Talker ROS2

[]: . /home/user/.bashrc_ros2
ros2 run demo_nodes_py talker

WebShell #1 Output: ROS1-Bridge

[]: created 2to1 bridge for topic '/chatter' with ROS 2 type
'std_msgs/String' and ROS 1 type ''
removed 2to1 bridge for topic '/chatter'

WebShell #2 Output: Listener ROS1

[]: [INFO] [1544551475.461572300]: I heard: [Hello World: 0]
[INFO] [1544551476.453461509]: I heard: [Hello World: 1]
[INFO] [1544551477.453674267]: I heard: [Hello World: 2]

WebShell #3 Output: Talker ROS2

[]: [INFO] [talker]: Publishing: "Hello World: 0"
[INFO] [talker]: Publishing: "Hello World: 1"
[INFO] [talker]: Publishing: "Hello World: 2"

ROS2 BASICS IN 5 DAYS | 39

2 - ROS1 Bridge

Example 2: Run the bridge for AddTwoInts service

For this you will need four different webshells, which we will name (for future reference):

• WebShell 1: ROS1-Bridge
• WebShell 2: add_two_ints_server ROS1
• WebShell 3: add_two_ints_client ROS2

Execute in WebShell #1: ROS1-Bridge

[]: # .bashrc_bridge sources everything and was used for the compilation

. /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2: add_two_ints_server ROS1

[]: # .bashrc_bridge sources everything and was used for the compilation

. /home/user/.bashrc_ros1
export ROS_MASTER_URI=http://localhost:11311
rosrun roscpp_tutorials add_two_ints_server

Execute in WebShell #3: add_two_ints_client ROS2

[]: # .bashrc_bridge sources everything and was used for the compilation

. /home/user/.bashrc_ros2
ros2 run demo_nodes_cpp add_two_ints_client

WebShell #1 Output: ROS1-Bridge

[]: Created 2 to 1 bridge for service /add_two_ints
Removed 2 to 1 bridge for service /add_two_ints

WebShell #2 Output: add_two_ints_server ROS1

[]: [INFO] [1544551634.781450042]: request: x=2, y=3
[INFO] [1544551634.782151118]: sending back response: [5]

WebShell #3 Output: add_two_ints_client ROS2

[]: [INFO] [add_two_ints_client]: Result of add_two_ints: 5

Exercises with simulation

Now that we know how to move around with ROS1-Bridge, let’s do more examples accessing
Robot systems and simulations.

We will do the following examples:

ROS2 BASICS IN 5 DAYS | 40

2 - ROS1 Bridge

• View the images published in ROS1-Gazebo by the Cameras of the robot with ROS2 sys-
tems.

• Tell the robot to move in a ROS1-Gazebo simulation through ROS2.
• Reset the simulation of ROS1-Gazebo through ROS2

Example 4.1

View the images published in ROS1-Gazebo by the Cameras of the robot with ROS2 sys-
tems

For this, you will need three different webshells, which we will name (for future reference):

• WebShell 1: ROS1-Bridge
• WebShell 2: Image topic remapper ROS1, remapping the Robots Image topic to the topic

/image.
• WebShell 3: show_image ROS2

Execute in WebShell #1: ROS1-Bridge

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2: Image topic remapper ROS1
We need to republish the Robot’s image topic into a topic that the ros2 run image_tools show-
image can use. At the time of the creation of this course, it only supports reading from a topic
called /image. This means that if your Robot Camera topic is called my_robot/raw, this topic has
to be republished in the topic /image. And that’s why we need to use the republish binary from
the ROS1 package image_transport to do just that. See the following official documentation for
more info.

[]: . /home/user/.bashrc_ros1
rosrun image_transport republish raw in:=/bb8/camera1/image_raw
out:=/image

Execute in WebShell #3: show_image ROS2
For the moment, this ROS2 image GUI only publishes from the topic named /image. This means
that we will have to remap it in some way to be able to get images from any ROS1 image topic.
See the source file for more details LINK. But because we did that on the previous step, and we
have ROS1-Bridge working, it’s just a matter of firing up this showimage and ROS1-Bridge will
detect that ROS2 is trying to read from the Image topic and connect them. And because we
remapped, the image topic will be a mirror image of the /bb8/camera1/image_raw.

[]: . /home/user/.bashrc_ros2
ros2 run image_tools showimage

ROS2 BASICS IN 5 DAYS | 41

2 - ROS1 Bridge

WebShell #1 Output: ROS1-Bridge

[]: created 1to2 bridge for topic '/image' with ROS 1 type
'sensor_msgs/Image' and ROS 2 type 'sensor_msgs/Image'
[INFO] [ros1_bridge]: Passing message from ROS 1 sensor_msgs/Image to
ROS 2 sensor_msgs/Image (showing msg only once per type)

WebShell #2 Output: Image topic remapper ROS1

[]:

WebShell #3 Output: Cam2image

[]: Received image #camera_link

[INFO] [showimage]: Received image #camera_link

...

Now, you can open the Graphical Tools and you should see something like this:

Go to the graphical interface window (hit the icon with a screen in the IDE)

BB8 Camera

Example 4.2

Move Robot from ROS1-Gazebo with ROS2

Let’s move the robot that is working with ROS1 and Gazebo, through ROS2 with the help of
ROS1-Bridge.

For this, you will need two different webshells, which we will name (for future reference):

ROS2 BASICS IN 5 DAYS | 42

2 - ROS1 Bridge

• WebShell 1: ROS1-Bridge
• WebShell 3: Publish movement command through ROS2

Execute in WebShell #1: ROS1-Bridge

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #3: Publish movement command through ROS2
To Make the robot turn:

[]: . /home/user/.bashrc_ros2
ros2 topic pub /cmd_vel geometry_msgs/Twist "{linear:{x: 0.0,y: 0.0,z:
0.0}, angular:{x: 0.0,y: 0.0,z: 1.0}}"

WebShell #1 Output: ROS1-Bridge

[]: created 2to1 bridge for topic '/cmd_vel' with ROS 2 type
'geometry_msgs/Twist' and ROS 1 type ''
[INFO] [ros1_bridge]: Passing message from ROS 2 geometry_msgs/Twist
to ROS 1 geometry_msgs/Twist (showing msg only once per type)

WebShell #3 Output: Image topic remapper ROS1

[]: publisher: beginning loop
publishing #1:

geometry_msgs.msg.Twist(linear=geometry_msgs.msg.Vector3(x=0.0, y=0.0,
z=0.0), angular=geometry_msgs.msg.Vector3(x=0.0, y=0.0, z=1.0))
...

And you should see the robot turning:

BB8 turning

To Make the robot STOP:

[]: . /home/user/.bashrc_ros2
ros2 topic pub /cmd_vel geometry_msgs/Twist "{linear:{x: 0.0,y: 0.0,z:
0.0}, angular:{x: 0.0,y: 0.0,z: 0.0}}"

Example 4.3

ROS2 BASICS IN 5 DAYS | 43

2 - ROS1 Bridge

Call the Reset Simulation service through ROS2

To practice service comunication with ROS2 using ROS1-Bridge, we are going to reset the simu-
lation, calling its service in Gazebo, called /gazebo/reset_simulation
For this, you will need two different webshells, which we will name (for future reference):

• WebShell 1: ROS1-Bridge
• WebShell 2: Publish the service call with ROS2

Execute in WebShell #1: ROS1-Bridge

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2: Publish movement command through ROS2
To Make the robot turn:

[]: . /home/user/.bashrc_ros2
ros2 service call /gazebo/reset_simulation std_srvs/Empty '{}'

WebShell #1 Output: ROS1-Bridge

[]: Created 2 to 1 bridge for service /bb8/camera1/set_camera_info
Created 2 to 1 bridge for service /bb8/imu/service
Created 2 to 1 bridge for service /gazebo/pause_physics
Created 2 to 1 bridge for service /gazebo/reset_simulation
Created 2 to 1 bridge for service /gazebo/reset_world
Created 2 to 1 bridge for service /gazebo/unpause_physics

WebShell #2 Output: Image topic remapper ROS1

[]: requester: making request: std_srvs.srv.Empty_Request()

response:
std_srvs.srv.Empty_Response()

The robot should have been reset to its original state before you started tinkering with movement
commands.

Congratulations, you can now combine ROS1 and ROS2.

ROS2 BASICS IN 5 DAYS | 44

Unit 3. Topics Part1

ROS2 BASICS IN 5 DAYS

Unit 3: Topics

Kobuki

• ROSject Link: https://bit.ly/2MBJDb2

• Robot: Turtlebot 2

Estimated time to completion: 2.5 hours Simulation: Turtlebot 2 What will you learn with this unit?

• What are topics and how to manage them
• What is a publisher and how to create one
• What are topic messages and how they work

ROS2 BASICS IN 5 DAYS | 45

3 - Topics

Kobuki Robot

Part 1: Publisher

Exercise 2.1

• Create a new package named topic_publisher_pkg. When creating the package, add
rclcpp and std_msgs as dependencies.

• Inside the src folder of the package, create a new file named simple_topic_publisher.cpp.
Inside this file, copy the contents of simple_topic_publisher.cpp

• Create a launch file for launching this code.

• Do the necessary modifications to your CMakeLists.txt file, and compile the package.

• Execute the launch file to run your executable.

Data for Excercice 2.1
1.- Remember that in order to be able to use the ROS2 command line tools, you need to first
source your environment properly with the following command:

[]: source /opt/ros/crystal/setup.bash

2.- In order to do this exercise, you can simply follow the same steps you used in the previous
chapter. It is almost the same.

3.- Remember, in order to create a package with roscpp and std_msgs as dependencies,
you should use a command like the one below:

ROS2 BASICS IN 5 DAYS | 46

3 - Topics

[]: ros2 pkg create topic_publisher_pkg --build-type ament_cmake
--dependencies rclcpp std_msgs

4.- The lines to add into the CmakeLists.txt file could be something like this:

[]: add_executable(simple_publisher_node src/simple_topic_publisher.cpp)
ament_target_dependencies(simple_publisher_node rclcpp std_msgs)

install(TARGETS
simple_publisher_node
DESTINATION lib/${PROJECT_NAME}

)

Install launch files.

install(DIRECTORY
launch
DESTINATION share/${PROJECT_NAME}/

)

C++ Program {2.1}: simple_topic_publisher.cpp

[]: #include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/int32.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
auto node = rclcpp::Node::make_shared("simple_publisher");
auto publisher =

node->create_publisher<std_msgs::msg::Int32>("counter");
auto message = std::make_shared<std_msgs::msg::Int32>();
message->data = 0;
rclcpp::WallRate loop_rate(2);

while (rclcpp::ok()) {

publisher->publish(message);
message->data++;
rclcpp::spin_some(node);
loop_rate.sleep();

}
rclcpp::shutdown();
return 0;

}

Nothing happened? Well. . . that’s not actually true! You have just created a topic named
/counter, and published through it as an integer that increases indefinitely. Let’s check some

ROS2 BASICS IN 5 DAYS | 47

3 - Topics

things.

A topic is like a pipe. Nodes use topics to publish information for other nodes so that
they can communicate. You can find out, at any time, the number of topics in the system by doing
a ros2 topic list. You can also check for a specific topic.

On your webshell, type ros2 topic list and check for a topic named ‘/counter’.

Execute in WebShell #1

[]: ros2 topic list | grep '/counter'

WebShell #1 Output

[]: user ~ $ ros2 topic list | grep '/counter'
/counter

Here, you have just listed all of the topics running right now and filtered with the grep command
the ones that contain the word /counter. If it appears, then the topic is running as it should.

You can request information about a topic by doing ros2 topic info <name_of_topic>.

Now, type ros2 topic info /counter.

Execute in WebShell #1

[]: ros2 topic info /counter

WebShell #1 Output

[]: user:~$ ros2 topic info /counter
Topic: /counter
Publisher count: 1
Subscriber count: 0

The output indicates the name of the topic, and the number of Publishers/Subscribers that the
topic has. At this moment, as you can see, it has only one Publisher, which is our program.

Now, type rostopic echo /counter and check the output of the topic in real-time.

Execute in WebShell #1

[]: ros2 topic echo /counter

You should see a succession of consecutive numbers, similar to the following:

WebShell #1 Output

ROS2 BASICS IN 5 DAYS | 48

3 - Topics

[]: user:~$ ros2 topic echo /counter
data: 59

data: 60

data: 61

data: 62

data: 63

data: 64

data: 65

data: 66

data: 67

Ok, so. . . what has just happened? Let’s explain it in more detail. First, let’s crumble the code
we’ve executed. You can check the comments in the code below, explaining what each line of the
code does:

[]: // Import all the necessary ROS libraries and import the Int32 message

from the std_msgs package

#include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/int32.hpp"

using namespace std::chrono_literals;

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
// Initiate a Node named 'simple_publisher'
auto node = rclcpp::Node::make_shared("simple_publisher");
// Create a Publisher object that will publish on the /counter

topic, messages of the type Int32
auto publisher =

node->create_publisher<std_msgs::msg::Int32>("counter");
// Create a variable named 'message' of type Int32
auto message = std::make_shared<std_msgs::msg::Int32>();
// Initialize the 'message' variable
message->data = 0;
// Set a publish rate of 2 Hz
rclcpp::WallRate loop_rate(2);

// Create a loop that will go until someone stops the program

ROS2 BASICS IN 5 DAYS | 49

3 - Topics

execution
while (rclcpp::ok()) {

// Publish the message within the 'message' variable
publisher->publish(message);
// Increment the 'message' variable
message->data++;
rclcpp::spin_some(node);
// Make sure the publish rate maintains at 2 Hz
loop_rate.sleep();

}
rclcpp::shutdown();
return 0;

}

So basically, what this code does is initiate a node and create a publisher that keeps publish-
ing a sequence of consecutive integers into the ‘/counter’ topic . Summarizing:

A publisher is a node that keeps publishing a message into a topic. So now. . . what’s a topic?

A topic is a channel that acts as a pipe, where other ROS nodes can either publish
or read information. Let’s now see some commands related to topics (some of them you’ve
already used).

To get a list of available topics in a ROS system, you have to use the following command:

[]: ros2 topic list

To read the information that is being published in a topic, use the following command:

[]: ros2 topic echo <topic_name>

This command will start printing all of the information that is being published into the topic.

To get information about a certain topic, use the following command:

[]: ros2 topic info <topic_name>

Finally, you can check the different options that rostopic command has by using the following
command:

[]: ros2 topic -h

ROS2 BASICS IN 5 DAYS | 50

3 - Topics

Node Composition

In the previous example, you checked a C++ script called simple_topic_publisher.cpp. This
script has been written using the old school programming method. We say this because it is
very similar to the way you would have written this script in ROS1. In ROS2, though, this style of
coding is going to become deprecated. And you may be asking. . . why? Well, it’s because of
Composition.

In ROS2, as a notable difference from ROS1, the concept of Composition is introduced.
Basically, this means that you will have the ability to compose (execute) multiple nodes in a single
process. You can read more about it here: https://index.ros.org/doc/ros2/Composition/
In order to be able to use node composition, though, you will need to program your scripts in a
more object-oriented way. So, the first script you checked, simple_topic_publisher.cpp, won’t
be able to use node composition.

Below, you can have a look at a script that does exactly the same thing, but it is coded us-
ing a composable method, using classes.

C++ Program {2.1b}: simple_topic_publisher_composable.cpp

[]: #include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/int32.hpp"

#include <chrono>

using namespace std::chrono_literals;

/* This example creates a subclass of Node and uses std::bind() to
register a

* member function as a callback from the timer. */

class SimplePublisher : public rclcpp::Node
{
public:

SimplePublisher()
: Node("simple_publisher"), count_(0)
{

publisher_ =
this->create_publisher<std_msgs::msg::Int32>("counter");

timer_ = this->create_wall_timer(
500ms, std::bind(&SimplePublisher::timer_callback, this));

}

private:
void timer_callback()
{

auto message = std_msgs::msg::Int32();
message.data = count_;
count_++;

ROS2 BASICS IN 5 DAYS | 51

3 - Topics

publisher_->publish(message);
}
rclcpp::TimerBase::SharedPtr timer_;
rclcpp::Publisher<std_msgs::msg::Int32>::SharedPtr publisher_;
size_t count_;

};

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
rclcpp::spin(std::make_shared<SimplePublisher>());
rclcpp::shutdown();
return 0;

}

simple_topic_publisher_composable.cpp

Code Analysis

First, we define our class, which inherits from the rclcpp::Node class.

[]: class SimplePublisher : public rclcpp::Node

Next, we have the constructor of our class:

[]: SimplePublisher()

Within the constructor, we are initializing our node by calling to the constructor of the superclass
Node, and also initializing a variable named count_ to 0.

[]: : Node("simple_publisher"), count_(0)

Also within the constructor, we create our publisher_ and timer_ objects. As you will see later,
they are actually created in the private section of our class, as shared pointers to these objects.
Note that the timer object is bound to a function named timer_callback, which we will see next.
This timer object will be triggered every 500ms.

[]: publisher_ = this->create_publisher<std_msgs::msg::Int32>("counter");
timer_ = this->create_wall_timer(

500ms, std::bind(&SimplePublisher::timer_callback, this));

In the private section, we have the definition of the timer_callback function we introduced before.
Inside this function, we are creating an Int32 message, which is given the value of the count_

ROS2 BASICS IN 5 DAYS | 52

3 - Topics

variable. Then, we are going to increase the value of the count variable in 1, and we are going to
publish the message into our topic. Remember that this function will be called every 500ms, as
defined in the timer_ object.

[]: void timer_callback()
{

auto message = std_msgs::msg::Int32();
message.data = count_;
count_++;
publisher_->publish(message);

}

Also in the private section, we are creating the shared pointers to our publisher and timer objects
defined above, and we are also creating the variable count.

[]: rclcpp::TimerBase::SharedPtr timer_;
rclcpp::Publisher<std_msgs::msg::Int32>::SharedPtr publisher_;
size_t count_;

Finally, on the main function, all we do is create a SimplePublisher object, and make it spin until
somebody terminates the program (Ctrl+C).

[]: int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
rclcpp::spin(std::make_shared<SimplePublisher>());
rclcpp::shutdown();
return 0;

}

And that’s it! Now, it is up to you to decide which method you will use for creating your ROS2
programs!

Messages

As you may have noticed, topics handle information through messages. There are many different
types of messages.

In the case of the code you executed before, the message type was a std_msgs/Int32,
but ROS provides a lot of different messages. You can even create your own messages, but it is
recommended to use ROS default messages when possible.

ROS2 BASICS IN 5 DAYS | 53

3 - Topics

Messages are defined in .msg files, which are located inside a msg directory of a pack-
age.

To get information about a message, use the following command:

[]: ros2 msg show <message>

Example 2.1
For example, let’s try to get information about the std_msgs/Int32 message. Type the following
command and check the output.

Execute in WebShell #1

[]: ros2 msg show std_msgs/Int32

WebShell #1 Output

[]: user:~$ ros2 msg show std_msgs/Int32
int32 data

In this case, the Int32 message has only one variable of type int32, named data. This Int32
message comes from the package std_msgs, and you can find it in its msg directory.

Now, you’re ready to create your own publisher and make the robot move, so let’s go for it!

Exercise 2.2
Modify the code you used previously so that it now publishes data to the /cmd_vel topic.

Compile your package again.

Launch the program and check that the robot moves.

Data for Excercice 2.2
1.- The /cmd_vel topic is the topic used to move the robot.

2.- The type of message used by the /cmd_vel topic is geometry_msgs/Twist.

3.- In order to know the structure of the Twist messages, you need to use the ros2 msg
show command.

4.- In this case, the robot uses a differential drive plugin to move. That is, the robot can
only move linearly in the x axis, or rotationaly in the angular z axis. This means that the only
values that you need to fill in the Twist message are the linear x and the angular z.

5.- The magnitudes of the Twist message are in m/s, so it is recommended to use values
between 0 and 1. For example, 0.5 m/s.

ROS2 BASICS IN 5 DAYS | 54

3 - Topics

6.- In order to be able to use the Twist message, you will need to include the geometry_msgs
package in your CMakeLists.txt file. Here:

[]: find_package(geometry_msgs REQUIRED)

[]: ament_target_dependencies(simple_publisher_node rclcpp std_msgs
geometry_msgs)

7.- Remember that in order to be able to communicate with the Turtlebot2 robot, which is running
on ROS1, you will need to start a ROS1 Bridge.

##
Solutions
Please try to do it by yourself unless you get stuck or need some inspiration. You will learn much
more if you fight through each exercise.

Follow this link to open the solutions for the Topics Part 1:Topics Part 1 Solutions

ROS2 BASICS IN 5 DAYS | 55

Unit 3. Topics Part 2

ROS2 BASICS IN 5 DAYS

Unit 3: Topics

Kobuki

• ROSject Link: https://bit.ly/2MBJDb2

• Robot: Turtlebot 2

Estimated time to completion: 2.5 hours What will you learn with this unit?

• What is a Subscriber and how to create one
• How to create your own message

ROS2 BASICS IN 5 DAYS | 56

3 - Topics

Kobuki Robot

Part 2: Subscriber

You’ve learned that a topic is a channel where nodes can either write or read information. You’ve
also seen that you can write into a topic using a publisher, so you may be thinking that there should
also be some kind of similar tool to read information from a topic. And you’re right! That’s called a
subscriber. A subscriber is a node that reads information from a topic. Let’s execute the next code:

Example 2.3

• Create a new package named topic_subscriber_pkg. When creating the package, add
rclcpp and std_msgs as dependencies.

• Inside the src folder of the package, create a new file named simple_topic_subscriber.cpp.
Inside this file, copy the contents of simple_topic_subscriber.cpp

• Create a launch file for launching this code.

• Do the necessary modifications to your CMakeLists.txt file, and compile the package.

• Execute the launch file to run your executable.

C++ Program {2.2}: simple_topic_subscriber.cpp

[]: #include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/int32.hpp"

rclcpp::Node::SharedPtr g_node = nullptr;

void topic_callback(const std_msgs::msg::Int32::SharedPtr msg)
{

RCLCPP_INFO(g_node->get_logger(), "I heard: '%d'", msg->data);

ROS2 BASICS IN 5 DAYS | 57

3 - Topics

}

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
g_node = rclcpp::Node::make_shared("simple_subscriber");
auto subscription =

g_node->create_subscription<std_msgs::msg::Int32>
("counter", topic_callback);

rclcpp::spin(g_node);
rclcpp::shutdown();

subscription = nullptr;
g_node = nullptr;
return 0;

}

What’s up? Nothing happened again? Well, that’s not actually true. . . Let’s do some checks.

Go to your webshell and type the following:

Execute in WebShell #1

[]: ros2 topic echo /counter

So. . . what happened? Nothing? And what does this mean? This means that nobody is
publishing into the /counter topic, so there’s no information to be read. Let’s then publish
something into the topic and see what happens. For that, let’s introduce a new command:

[]: ros2 topic pub <topic_name> <message_type> <value>

This command will publish the message you specify with the value you specify, in the topic you
specify.

Open another webshell (leave the one with the rostopic echo open) and type the next
command:

Execute in WebShell #2

[]: ros2 topic pub /counter std_msgs/Int32 "{data: '5'}"

Now, check the output of the console where you did the rostopic echo again. You should see
something like this:

WebShell #1 Output

[]: user:~$ ros2 topic echo /counter
data: 5

ROS2 BASICS IN 5 DAYS | 58

3 - Topics

data: 5

data: 5

data: 5

data: 5

...

This means that the value you published has been received by your subscriber program (which
prints the value on the screen).

Now, check the output of the shell where you executed your subscriber code. You should
see something like this:

[]: ros2 launch topic_subscriber_pkg simple_topic_subscriber.launch.py
[INFO] [launch]: process[simple_subscriber_node-1]: started with pid
[5900]
[INFO] [simple_subscriber]: I heard: '5'
[INFO] [simple_subscriber]: I heard: '5'
[INFO] [simple_subscriber]: I heard: '5'
[INFO] [simple_subscriber]: I heard: '5'
[INFO] [simple_subscriber]: I heard: '5'
[INFO] [simple_subscriber]: I heard: '5'
[INFO] [simple_subscriber]: I heard: '5'

Before explaining everything in more detail, let’s explain the code you executed.

[]: #include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/int32.hpp"

rclcpp::Node::SharedPtr g_node = nullptr;

// Define a function called 'topic_callback' that receives a parameter
named 'msg'
void topic_callback(const std_msgs::msg::Int32::SharedPtr msg)
{

// Print the value 'data' inside the 'msg' parameter
RCLCPP_INFO(g_node->get_logger(), "I heard: '%d'", msg->data);

}

int main(int argc, char * argv[])
{

ROS2 BASICS IN 5 DAYS | 59

3 - Topics

rclcpp::init(argc, argv);
// Initiate a Node called 'simple_subscriber'
g_node = rclcpp::Node::make_shared("simple_subscriber");
// Create a Subscriber object that will listen to the /counter topic

and will call the 'topic_callback' function // each time it
reads something from the topic

auto subscription =
g_node->create_subscription<std_msgs::msg::Int32>

("counter", topic_callback);
// Create a loop that will keep the program in execution
rclcpp::spin(g_node);
rclcpp::shutdown();

subscription = nullptr;
g_node = nullptr;
return 0;

}

So, let’s explain what has just happened. You’ve basically created a subscriber node that listens
to the /counter topic, and each time it reads something, it calls a function that does a print of the
msg. Initially, nothing happened since nobody was publishing into the /counter topic, but when
you executed the ros2 topic pub command, you published a message into the /counter topic, so
your subscriber has printed that number and you could also see that message in the ros2 topic
echo output. Now, everything makes sense, right?

Node Composition

As explained in the previous chapter, the C++ script you have just checked, sim-
ple_topic_subscriber.cpp, is written using the old school programming method. So, it
won’t be able to use Node Composition. In order to be able to use Node Composition, you would
have to use a script like the one below.

C++ Program {2.2b}: simple_topic_subscriber_composable.cpp

[]: #include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/int32.hpp"

using std::placeholders::_1;

class SimpleSubscriber : public rclcpp::Node
{
public:

SimpleSubscriber()
: Node("simple_subscriber")
{

subscription_ = this->create_subscription<std_msgs::msg::Int32>(
"counter", std::bind(&SimpleSubscriber::topic_callback, this,

ROS2 BASICS IN 5 DAYS | 60

3 - Topics

_1));
}

private:
void topic_callback(const std_msgs::msg::Int32::SharedPtr msg)
{

RCLCPP_INFO(this->get_logger(), "I heard: '%d'", msg->data);
}
rclcpp::Subscription<std_msgs::msg::Int32>::SharedPtr subscription_;

};

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
rclcpp::spin(std::make_shared<SimpleSubscriber>());
rclcpp::shutdown();
return 0;

}

simple_topic_subscriber_composable.cpp
As you can see, it’s quite similar to the first script, but in this case, we are using a class named
SimpleSubscriber, which inherits from the superclass Node - just like in the example you saw in
the previous chapter.

Now, let’s do some exercises to put into practice what you’ve learned!

Exercise 2.4
Modify the previous code in order to print the odometry of the robot.

Data for Exercice 2.4
The odometry of the robot is published by the robot into the /odom topic.

You will need to figure out what message uses the /odom topic, and the structure of this
message.

Remember to compile your package again in order to update your executable.

IMPORTANT NOTE: Remember that in order to be able to read the odometry data from
the /odom topic of the simulation, you will need to first launch a ROS1 Bridge.

Solution Exercise 2.4
Please try to do it by yourself unless you get stuck or need some inspiration. You will learn much
more if you fight through each exercise.

Follow this link to open the solutions notebook for Unit 2, Topics Part 2: Topics Part2 Solutions
Exercise 2.5

ROS2 BASICS IN 5 DAYS | 61

3 - Topics

1. Add to {Exercice 2.4} a C++ file that creates a publisher, which indicates the age of the robot,
to the previous package.

2. For that, you’ll need to create a new message, called Age.msg. See the detailed description
How to prepare CMakeLists.txt and package.xml for custom topic message compilation.

Solution Exercise 2.5
Please try to do it by yourself unless you get stuck or need some inspiration. You will learn much
more if you fight through each exercise.

Follow this link to open the solutions notebook for Unit 2, Topics Part 2: Topics Part2 Solutions

How to Prepare CMakeLists.txt and package.xml for Custom Topic Message Com-
pilation

Now, you may be wondering. . . in case I need to publish some data that is not an Int32, which
type of message should I use? You can use all ROS defined (ros2 msg list) messages. But, in
case none fit your needs, you can create a new one.

In order to create a new message, you will need to do the following steps:

1. Create a directory named ‘msg’ inside your package
2. Inside this directory, create a file named Name_of_your_message.msg (more information

below)
3. Modify CMakeLists.txt file (more information below)
4. Modify package.xml file (more information below)
5. Compile and source
6. Use in code

For example, let’s create a message that indicates age, with years, months, and days.

1) Create a directory msg in your package.

[]: cd ~/ros2_ws/src/<package_name>
mkdir msg

2) The Age.msg file must contain this:

[]: float32 years
float32 months
float32 days

3) In CMakeLists.txt

You will have to edit four functions inside CMakeLists.txt:

• find_package()
• rosidl_generate_interfaces()

ROS2 BASICS IN 5 DAYS | 62

3 - Topics

I. find_package()

This is where all the packages required to COMPILE the messages of the topics, services, and
actions go. In package.xml, you have to state them as build_depend and exec_depend.

[]: find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(std_msgs REQUIRED)
find_package(builtin_interfaces REQUIRED)
find_package(rosidl_default_generators REQUIRED)

II. rosidl_generate_interfaces()

This function includes all of the messages of this package (in the msg folder) to be compiled. The
file should look like this.

[]: rosidl_generate_interfaces(new_msg
"msg/Age.msg"

)

Summarizing, this is the minimum expression of what is needed for the CMakaelist.txt to work:

Note: Keep in mind that the name of the package in the following example is topic_ex, so
in your case, the name of the package may be different.

[]: cmake_minimum_required(VERSION 3.5)
project(new_msg)

Default to C99

if(NOT CMAKE_C_STANDARD)
set(CMAKE_C_STANDARD 99)

endif()

Default to C++14

if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)

endif()

if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic)

endif()

find dependencies

find_package(ament_cmake REQUIRED)

ROS2 BASICS IN 5 DAYS | 63

3 - Topics

find_package(rclcpp REQUIRED)
find_package(std_msgs REQUIRED)
find_package(builtin_interfaces REQUIRED)
find_package(rosidl_default_generators REQUIRED)

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
the following line skips the linter which checks for copyrights

remove the line when a copyright and license is present in all

source files
set(ament_cmake_copyright_FOUND TRUE)
the following line skips cpplint (only works in a git repo)

remove the line when this package is a git repo

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

endif()

rosidl_generate_interfaces(new_msg
"msg/Age.msg"

)

ament_package()

4) Modify package.xml

First, you will need to set the package format to 3. Note that, by default, this will be set to 2, so
you will need to manually modify it.

[]: <package format="3">

This has to be done because the member_of_group command requires format 3.

Now, just add the following lines to the package.xml file.

[]: <build_depend>builtin_interfaces</build_depend>
<build_depend>rosidl_default_generators</build_depend>
<exec_depend>builtin_interfaces</exec_depend>
<exec_depend>rosidl_default_runtime</exec_depend>

<member_of_group>rosidl_interface_packages</member_of_group>

This is the minimum expression of the package.xml
Note: Keep in mind that the name of the package in the following example is new_msg, so in your
case, the name of the package may be different.

ROS2 BASICS IN 5 DAYS | 64

3 - Topics

[]: <?xml version="1.0"?>

<?xml-model href="http://download.ros.org/schema/package_format2.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">

<name>new_msg</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="ubuntu@todo.todo">ubuntu</maintainer>
<license>TODO: License declaration</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>std_msgs</depend>

<build_depend>builtin_interfaces</build_depend>
<build_depend>rosidl_default_generators</build_depend>
<exec_depend>builtin_interfaces</exec_depend>
<exec_depend>rosidl_default_runtime</exec_depend>

<member_of_group>rosidl_interface_packages</member_of_group>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

5) Now, you have to compile the msgs. To do this, you have to type in a WebShell:

Execute in WebShell #1

[]: cd ~/ros2_ws
colcon build --symlink-install --packages-select new_msg
source install/setup.bash

VERY IMPORTANT: When you compile new messages, there is still an extra step before you can
use the messages. You have to type in the Webshell, in the ros2_ws, the following command:
source install/setup.bash. This executes this bash file that sets, among other things, the newly
generated messages created through the colcon build. If you don’t do this, it might give you an
import error, saying it doesn’t find the message generated.
HINT 2: To verify that your message has been created successfully, type into your webshell: ros2
msg show new_msg/Age. If the structure of the Age message appears, it will mean that your
message has been created successfully and it’s ready to be used in your ROS programs.

Execute in WebShell #1

ROS2 BASICS IN 5 DAYS | 65

3 - Topics

[]: ros2 msg show new_msg/Age

WebShell #1 Output

[]: user ~ $ ros2 msg show new_msg/Age
float32 years
float32 months
float32 days

To use Custom Messages in Cpp files

You will have to add to your CMakeLists.txt the following extra lines to compile and link your
executable (in this example, it’s called publish_age.cpp):

[]: find_package(new_msg REQUIRED)

add_executable(age_publisher_node src/publish_age.cpp)
ament_target_dependencies(age_publisher_node rclcpp std_msgs new_msg)

install(TARGETS
age_publisher_node
DESTINATION lib/${PROJECT_NAME}

)

Topics Mini Project

Tultlebot2

With all you’ve learned during this course, you’re now able to do a small quiz to put everything
together. Subscribers, Publishers, Messages. . . you will need to use all of these concepts in
order to succeed!

ROS2 BASICS IN 5 DAYS | 66

3 - Topics

In this small project, you will create a code to make the robot avoid the wall that is in front
of it. To help you achieve this, let’s divide the project into smaller units:

1. Create a Publisher that writes into the /cmd_vel topic in order to move the robot.
2. Create a Subscriber that reads from the /kobuki/laser/scan topic. This is the topic where

the laser publishes its data.
3. Depending on the readings you receive from the laser’s topic, you’ll have to change the data

you’re sending to the /cmd_vel topic in order to avoid the wall. This means, use the values
of the laser to decide.

HINT 1: The data that is published into the /kobuki/laser/scan topic has a large structure. For this
project, you just have to pay attention to the ‘ranges’ array.

Execute in WebShell #1

[]: ros2 msg show sensor_msgs/LaserScan

WebShell #1 Output

[]: user ~ $ ros2 msg show sensor_msgs/LaserScan
std_msgs/Header header

uint32 seq
time stamp
string frame_id

float32 angle_min
float32 angle_max
float32 angle_increment
float32 time_increment
float32 scan_time
float32 range_min
float32 range_max
float32[] ranges <-- Use only this one
float32[] intensities

HINT 2: The ‘ranges’ array has a lot of values. The ones that are in the middle of the array
represent the distances that the laser is detecting right in front of him. This means that the values
in the middle of the array will be the ones that detect the wall. So, in order to avoid the wall, you
just have to read these values.

HINT 3: The laser has a range of 30m. When you get readings of values around 30, it
means that the laser isn’t detecting anything. If you get a value that is under 30, this will mean
that the laser is detecting some kind of obstacle in that direction (the wall).

HINT 4: The scope of the laser is about 180 degrees from right to left. This means that
the values at the beginning and at the end of the ‘ranges’ array will be the ones related to the
readings on the sides of the laser (left and right), while the values in the middle of the array will be

ROS2 BASICS IN 5 DAYS | 67

3 - Topics

the ones related to the front of the laser.

ROS2 BASICS IN 5 DAYS | 68

Unit 4. Services in ROS Part 1

ROS2 BASICS IN 5 DAYS

Cpp Services in ROS2 Part 1

Iri Wam Robot

• ROSject Link: https://bit.ly/2FPf3tR

• Robot: WAM Arm

Estimated time to completion: 2.5 hours What will you learn with this unit?

• What a service is
• How to create a service server
• How to create a service client
• How to call a service

ROS2 BASICS IN 5 DAYS | 69

4 - Services in ROS

Part 1

Congratulations! You now know 75% of ROS Basics! With topics, you can do more or less
whatever you want and need for your astromech droid. Many ROS packages only use topics
and have the work perfectly done. Then, why do you need to learn about services? Well, that’s
because for some cases, topics are insufficient or just too cumbersome to use. Of course, you
can destroy the Death Star with a stick, but you will just spend ages doing it. Better tell Luke
SkyWalker to do it for you, right? Well, it’s the same with services. They just make life easier.

Topics - Services - Actions

To understand what services are and when to use them, you have to compare them with
topics and actions. Imagine you have your own personal BB-8 robot. It has a laser sensor, a
face-recognition system, and a navigation system. The laser will use a Topic to publish all of the
laser readings at 20hz. We use a topic because we need to have that information available all
the time for other ROS systems, such as the navigation system. The face-recognition system will
provide a Service. Your ROS program will call that service and WAIT until it gives you the name
of the person BB-8 has in front of it. The navigation system will provide an Action. Your ROS
program will call the action to move the robot somewhere, and WHILE it’s performing that task,
your program will perform other tasks, such as complain about how tiring C-3PO is. And that
action will give you Feedback (for example: distance left to the desired coordinates) as teh robot
moves toward the coordinates.

So. . . what’s the difference between a Service and an Action? Services are Synchronous.
When your ROS program calls a service, your program can’t continue until it receives a result
from the service. Actions are Asynchronous. It’s like launching a new thread. When your ROS
program calls an action, your program can perform other tasks while the action is being performed
in another thread.

Conclusion: Use services when your program can’t continue until it receives the result from
the service.

ROS2 and Services Examples

We will see how to use commands for ROS2 Service.

We will also go step by step through the creation of a Service Server and Service Client
for ROS2.

We will do the following:

• Go over the different commands for ROS2 services.
• Talk about limitations of ROS1-Bridge and how to circumvent them.
• Call through commands the Robot service to delete a model in ROS2.

ROS2 BASICS IN 5 DAYS | 70

4 - Services in ROS

• Create a dummy-Service-Server for ROS2.
• Create a client for the dummy_Service-Server for ROS2 to Delete a model.
• Modify the client for the dummy_Service-Server for ROS2, to call the real Robot service to

delete a model.

Get the structure of service messages and commands:

ROS2, at the time of the creation of this tutorial, supports the following commands for services
and its messages:

• ros2 service list: Lists all the services currently running in the system
• ros2 service call: Calls a certain service currently available
• ros2 srv list: Lists all the Service messages available
• ros2 srv package: Lists all the service messages from a package
• ros2 srv packages: Lists all the available packages that have service messages defined

inside them.
• ros2 srv show: Gets the structure of a certain service message

WARNING: There is currently no support for the ROS2 service info command that you would
have in ROS1.

ROS2 service list

Execute in WebShell #1
Remember that whenever you interact with ROS1, you need to launch ROS1-Bridge.

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2
With this command, you can get all the services running now. In this case, most of them are
related to ROS1-Gazebo.

[]: # Get all the services currently running

. /home/user/.bashrc_ros2
ros2 service list

WebShell #2 Output

[]: /camera/set_camera_info
/gazebo/pause_physics

ROS2 BASICS IN 5 DAYS | 71

4 - Services in ROS

/gazebo/reset_simulation
/gazebo/reset_world
/gazebo/unpause_physics
/ros_bridge/describe_parameters
/ros_bridge/get_parameter_types
/ros_bridge/get_parameters
/ros_bridge/list_parameters
/ros_bridge/set_parameters
/ros_bridge/set_parameters_atomically

Limitations of ROS1-Bridge and how to circumvent them

Here comes a very important topic, which is the Support that ROS1-Bridge debians have
towards service messages. For the moment, not all messages are supported. This means that
although both types of messages are installed both in the melodic ROS1 and crystal ROS2, be-
cause the ROS1-Bridge wasn’t compiled versus those messages, it won’t be able to connect them!

A good way to see if ROS1-Bridge supports the service is the list of services given at the
start. In this case, you can see that only these are supported:

[]: /camera/set_camera_info
/gazebo/pause_physics
/gazebo/reset_simulation
/gazebo/reset_world
/gazebo/unpause_physics

This is because these are the only services in Gazebo for ROS1 that don’t use service messages
from the gazebo_msgs type.

For example, let’s check the type of message used in the service /gazebo/delete_model in
ROS1
Execute in WebShell #3

[]: . /home/user/.bashrc_ros1
rosservice info /gazebo/delete_model

Output of WebShell #3

[]: Node: /gazebo
URI: rosrpc://10.8.0.1:35755
Type: gazebo_msgs/DeleteModel
Args: model_name

This is why the ROS1-Bridge doesn’t find it and you won’t be able to send anything to that service
from ROS2 to ROS1.

So, in this scenario, you have three options:

ROS2 BASICS IN 5 DAYS | 72

4 - Services in ROS

• You compile ROS1-Bridge from source with the new messages in the same workspace. We
won’t to this in this basic course.

• You use an entire ROS2 system, not needing ROS1-Bridge. We will do that in the MARA
robot.

• You create Bridge Services that are created and launched in ROS1 and use supported
ROS1-Bridge messages; in this case std_srvs. This service will be able to communicate
with ROS2 through ROS1-Bridge and then execute the equivalent action in ROS1 space.
This is what we are going to do in this course.

Let’s see an example:

ROS2 service call

We want to call a ROS1 service of Gazebo to delete an object in the scene. Because it’s ROS1
Gazebo, we need ROS1-Bridge to interact with it.

[]: ros2 service call /gazebo/delete_model gazebo_msgs/DeleteModel
'{model_name: TestingName}'

Execute in WebShell #1
Remember that whenever you interact with ROS1, you need to launch ROS1-Bridge.

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2

[]: # Call A Service Server

. /home/user/.bashrc_ros2
ros2 service call /gazebo/delete_model gazebo_msgs/DeleteModel
'{model_name: bowl_1}'

Note that you have to leave a space between “:” and the name. For further reference, please
have a look at YAMLCommandLine from ROS documentation on how to fill in the calls for different
messages. This is because in ROS2, at the time of the creation of this course, it doesn’t support
autocomplete the service messages in the call method in the command line.

WebShell #2 Output

[]: waiting for service to become available...

As you can see, nothing happens. That’s because that topic is NOT in the ROS2 space, due to the
limitations mentioned about ROS1-Bridge. Therefore, you will have to create a Bridge-Service

ROS2 BASICS IN 5 DAYS | 73

4 - Services in ROS

in ROS1.

If you don’t control ROS1 Basics, we recommend following the ROS in Five Days with
CPP course before continuing to the next step.

Execute in WebShell #3 ROS1

[]: . /home/user/.bashrc_ros1
cd ~/catkin_ws/src
catkin_create_pkg my_bridge_ros1_pkgs roscpp std_srvs
touch my_bridge_ros1_pkgs/src/bridge_delete_model_server.cpp
cd ~/catkin_ws
catkin_make
source devel/setup.bash
rospack profile

We create the following files and compile:

C++ Program {3.1}: bridge_delete_model_server.cpp

[]: #include <ros/ros.h>

#include "gazebo_msgs/DeleteModel.h"

#include <std_srvs/Empty.h>

class BridgeDeleteModelServer

{
private:

// ROS Objects
ros::NodeHandle nh_;

// ROS Services
ros::ServiceServer srv_perform_square_;

ros::ServiceServer bridge_delete_model_service_server_;
ros::ServiceClient delete_model_service_client_;

public:

BridgeDeleteModelServer()
{

ROS_INFO("Creating Service...");
// create the Service called
this->bridge_delete_model_service_server_ =

nh_.advertiseService("/my_bridge_delete_model",
&BridgeDeleteModelServer::my_callback,
this);

ROS2 BASICS IN 5 DAYS | 74

4 - Services in ROS

this->delete_model_service_client_ =
nh_.serviceClient<gazebo_msgs::DeleteModel>("/gazebo/delete_model");

ROS_INFO("Creating Service...DONE");

}

~BridgeDeleteModelServer(void)
{

}

bool my_callback(std_srvs::Empty::Request &req,
std_srvs::Empty::Response &res)

{
// Create an object of type DeleteModel
gazebo_msgs::DeleteModel srv;
// Fill the variable model_name of this object with the

desired value
srv.request.model_name = "bowl_1";

// Send through the connection the name of the object to
be deleted by the service

if (delete_model_service_client_.call(srv))
{

// Print the result given by the service called
ROS_INFO("%s", srv.response.status_message.c_str());
return true;

}
else

{
ROS_ERROR("Failed to call service delete_model");
return false;

}

}

};

int main(int argc, char** argv)
{

ros::init(argc, argv, "bridge_delete_model_server_node");

BridgeDeleteModelServer bridge_delete;

ros::spin();

ROS2 BASICS IN 5 DAYS | 75

4 - Services in ROS

return 0;
}

The only line that you should be concerned with here is the one where we specify that the model
be deleted:

[]: srv.request.model_name = "bowl_1";

And change the CMakelists.txt and package.xml
CMake File {3.1}: CMakelists.txt

[]: cmake_minimum_required(VERSION 2.8.3)
project(my_bridge_ros1_pkgs)

Compile as C++11, supported in ROS Kinetic and newer

add_compile_options(-std=c++11)

Find catkin macros and libraries

if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS

xyz)
is used, also find other catkin packages

find_package(catkin REQUIRED COMPONENTS
roscpp
std_srvs
gazebo_msgs

)

catkin_package(
INCLUDE_DIRS include

LIBRARIES my_bridge_ros1_pkgs

)

include_directories(
include

${catkin_INCLUDE_DIRS}
)

add_executable(bridge_delete_model_server_node
src/bridge_delete_model_server.cpp)
add_dependencies(bridge_delete_model_server_node
${bridge_delete_model_server_node_EXPORTED_TARGETS}

${catkin_EXPORTED_TARGETS})
target_link_libraries(bridge_delete_model_server_node

${catkin_LIBRARIES}
)

ROS2 BASICS IN 5 DAYS | 76

4 - Services in ROS

XML File {3.1}: package.xml

[]: <?xml version="1.0"?>
<package format="2">

<name>my_bridge_ros1_pkgs</name>
<version>0.0.0</version>
<description>The my_bridge_ros1_pkgs package</description>
<maintainer email="user@todo.todo">user</maintainer>
<license>TODO</license>

<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend>
<build_depend>std_srvs</build_depend>
<build_depend>gazebo_msgs</build_depend>
<build_export_depend>roscpp</build_export_depend>
<build_export_depend>std_srvs</build_export_depend>
<build_export_depend>gazebo_msgs</build_export_depend>
<exec_depend>roscpp</exec_depend>
<exec_depend>std_srvs</exec_depend>
<exec_depend>gazebo_msgs</exec_depend>

<!-- The export tag contains other, unspecified, tags -->
<export>

<!-- Other tools can request additional information be placed here
-->

</export>
</package>

Execute in WebShell #3 ROS1
We compile the new program:

[]: . /home/user/.bashrc_ros1
cd ~/catkin_ws
catkin_make
source devel/setup.bash
rospack profile

Ok, now that we have all the pieces to make this work, let’s return and launch everything in the
corresponding webshells:

Execute in WebShell #1
Remember that whenever you interact with ROS1, you need to launch ROS1-Bridge.

ROS2 BASICS IN 5 DAYS | 77

4 - Services in ROS

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #3 ROS1 Service that we created in ROS1

[]: . /home/user/.bashrc_ros1
rosrun my_bridge_ros1_pkgs bridge_delete_model_server_node

Execute in WebShell #2

[]: # We check that the bridge service is now available for ROS2 space

. /home/user/.bashrc_ros2
ros2 service list | grep /my_bridge_delete_model

WebShell #2 Output: ROS2

[]: /my_bridge_delete_model

If you got the name of the topic in the output, /my_bridge_delete_model, then everything went
ok and you can now proceed to call that service and Remove the bowl_1 model from the scene
with ROS2.

Execute in WebShell #2 ROS2

[]: # Call A Service Server

. /home/user/.bashrc_ros2
ros2 service call /my_bridge_delete_model std_srvs/Empty '{}'

WebShell #2 Output: ROS2

[]: requester: making request: std_srvs.srv.Empty_Request()

response:
std_srvs.srv.Empty_Response()

You should now see in the simulation how the bowl_1 gets deleted from the scene. If you want to
reset the environment, just change to another unit that has a different simulation and come back
to this one to reset the whole simulation environment.

Bowls

ROS2 BASICS IN 5 DAYS | 78

4 - Services in ROS

ROS2 srv list

Warning: Don’t mix with the command ros2 service list. Here we are NOT listing the services
currently available and running in ROS2 system. Here we list the Service Messages available for
use in ROS2.

Execute in WebShell #2
Note that in the following commands, bridge is not necessary because it’s only for message
information and the ROS2 system, in general.

[]: # List all available service messages in the system

. /home/user/.bashrc_ros2
ros2 srv list

WebShell #2 Output

[]: ...
rcl_interfaces/GetParameters
rcl_interfaces/ListParameters
rcl_interfaces/SetParameters
rcl_interfaces/SetParametersAtomically
sensor_msgs/SetCameraInfo
std_srvs/Empty
std_srvs/SetBool
std_srvs/Trigger
tf2_msgs/FrameGraph
...

As you can see in the available message types, you CAN use Gazebo_msgs, but that doesn’t
mean that the debian from ROS2 bridge can use them because it would have to be compiled
versus those messages, which seems not to be the case.

ROS2 srv package gazebo_msgs

Execute in WebShell #2

[]: # List all the messages defined in a certain package

. /home/user/.bashrc_ros2
ros2 srv package gazebo_msgs

WebShell #2 Output

[]: gazebo_msgs/ApplyBodyWrench
gazebo_msgs/ApplyJointEffort
gazebo_msgs/BodyRequest
gazebo_msgs/DeleteEntity

ROS2 BASICS IN 5 DAYS | 79

4 - Services in ROS

gazebo_msgs/DeleteLight
gazebo_msgs/DeleteModel
gazebo_msgs/GetJointProperties
gazebo_msgs/GetLightProperties
gazebo_msgs/GetLinkProperties
gazebo_msgs/GetLinkState
gazebo_msgs/GetModelProperties
gazebo_msgs/GetModelState
gazebo_msgs/GetPhysicsProperties
gazebo_msgs/GetWorldProperties
gazebo_msgs/JointRequest
gazebo_msgs/SetJointProperties
gazebo_msgs/SetJointTrajectory
gazebo_msgs/SetLightProperties
gazebo_msgs/SetLinkProperties
gazebo_msgs/SetLinkState
gazebo_msgs/SetModelConfiguration
gazebo_msgs/SetModelState
gazebo_msgs/SetPhysicsProperties
gazebo_msgs/SpawnEntity
gazebo_msgs/SpawnModel

Execute in WebShell #2

[]: # List all the packages that have Service Messages defined in them

. /home/user/.bashrc_ros2
ros2 srv packages

WebShell #2 Output

[]: composition
diagnostic_msgs
example_interfaces
gazebo_msgs
lifecycle_msgs
logging_demo
map_msgs
nav_msgs
rcl_interfaces
sensor_msgs
std_srvs
tf2_msgs
unit_3_services_custom_msgs

Execute in WebShell #2

[]: # List all the messages defined in a certain package

. /home/user/.bashrc_ros2
ros2 srv show gazebo_msgs/DeleteModel

ROS2 BASICS IN 5 DAYS | 80

4 - Services in ROS

WebShell #2 Output

[]: string model_name # name of the Gazebo Model to be

deleted

bool success # return true if deletion is

successful
string status_message # comments if available

And here we can introduce the structure of the Service Messages. Does this Output for the
DeleteModel message seem familiar? It should because it’s the same structure as the Topics
messages, with some add-ons.

Service Message Properties:

• Service messages have the extension .srv. Remember that Topic messages have the ex-
tension .msg

• Service messages are defined inside a srv directory, instead of a msg directory.
• Service messages have TWO parts:

REQUEST
—
RESPONSE
In the case of the DeleteModel service, REQUEST contains a string called model_name and
RESPONSE is composed of a boolean named success, and a string named status_message.
The Number of elements on each part of the service message can vary depending on the
service needs. You can even put none if you find that it is irrelevant for your service. The impor-
tant part of the message is the three dashes —, because they define the file as a Service Message.

Summarizing:

The REQUEST is the part of the service message that defines HOW you will do a call to
your service. This means, what variables you will have to pass to the Service Server so that it is
able to complete its task.

The RESPONSE is the part of the service message that defines HOW your service will
respond after completing its functionality. For instance, it will return a string with a certain
message saying that everything went well, or it will return nothing, etc. . .
Example 3.1

Create cpp_unit_3_services package

We first create the package where we will save all the service codes and exercises.

Execute in WebShell #1

ROS2 BASICS IN 5 DAYS | 81

4 - Services in ROS

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws/src
ros2 pkg create cpp_unit_3_services --build-type ament_cmake
--dependencies std_msgs rclcpp gazebo_msgs

WebShell #1 Output

[]: going to create a new package
package name: cpp_unit_3_services
destination directory: /home/user/ros2_ws/src
package format: 2
version: 0.0.0
description: TODO: Package description
maintainer: ['user <user@todo.todo>']
licenses: ['TODO: License declaration']
build type: ament_cmake
dependencies: ['std_msgs', 'rclcpp', 'gazebo_msgs']
creating folder ./cpp_unit_3_services
creating ./cpp_unit_3_services/package.xml
creating source and include folder
creating folder ./cpp_unit_3_services/src
creating folder ./cpp_unit_3_services/include/cpp_unit_3_services
creating ./cpp_unit_3_services/CMakeLists.txt

And now we compile.

Execute in WebShell #1

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws
Compile all workspace

colcon build --symlink-install

Compile only the package we have created

colcon build --symlink-install --packages-select cpp_unit_3_services

WebShell #1 Output

[]: Starting >>> cpp_unit_3_services
Finished <<< cpp_unit_3_services [2.54s]

Summary: 1 package finished [2.73s]

Create Service Client and Dummy Server

Let’s now learn how to call and give a service in ROS2. Let’s start with a dummy Server.

Execute in WebShell #1

[]: cd ~/ros2_ws/src/cpp_unit_3_services
touch src/cpp_simple_service_client.cpp

ROS2 BASICS IN 5 DAYS | 82

4 - Services in ROS

C++ Program {3.2}: cpp_simple_service_client.cpp
Note that if the original service message name was DeleteModel.srv, the generated hpp file for
the messages will be named delete_model.hpp. If you had MyCustomService.srv, it would be
my_custom_service.hpp, and so on.

[]: #include <chrono>

#include <cinttypes>

#include <iostream>

#include <memory>

#include <string>

#include "rclcpp/rclcpp.hpp"

#include "gazebo_msgs/srv/delete_model.hpp"

gazebo_msgs::srv::DeleteModel::Response::SharedPtr send_request(
rclcpp::Node::SharedPtr node,
rclcpp::Client<gazebo_msgs::srv::DeleteModel>::SharedPtr client,
gazebo_msgs::srv::DeleteModel::Request::SharedPtr request)

{

auto result = client->async_send_request(request);
// Wait for the result.
if (rclcpp::spin_until_future_complete(node, result) ==

rclcpp::executor::FutureReturnCode::SUCCESS)
{

RCLCPP_INFO(node->get_logger(), "Client request->model_name : %s",
request->model_name.c_str());

return result.get();
} else {

RCLCPP_ERROR(node->get_logger(), "service call failed :(");
return NULL;

}

}

int main(int argc, char ** argv)
{

// Force flush of the stdout buffer.
setvbuf(stdout, NULL, _IONBF, BUFSIZ);

rclcpp::init(argc, argv);

auto node =
rclcpp::Node::make_shared("cpp_simple_service_client");

ROS2 BASICS IN 5 DAYS | 83

4 - Services in ROS

auto topic = std::string("/gazebo/delete_model");
auto client =

node->create_client<gazebo_msgs::srv::DeleteModel>(topic);
auto request =

std::make_shared<gazebo_msgs::srv::DeleteModel::Request>();

// Fill the variable model_name of this object with the desired
value

request->model_name = "bowl_1";

while (!client->wait_for_service(std::chrono::seconds(1))) {
if (!rclcpp::ok()) {

RCLCPP_ERROR(node->get_logger(), "Interrupted while waiting for
the service. Exiting.");

return 0;
}
RCLCPP_INFO(node->get_logger(), "service not available, waiting

again...");
}

auto result = send_request(node, client, request);
if (result) {

auto result_str = result->success ? "True" : "False";

RCLCPP_INFO(node->get_logger(), "Result-Success : %s",
result_str);

RCLCPP_INFO(node->get_logger(), "Result-Status: %s",
result->status_message.c_str());

} else {
RCLCPP_ERROR(node->get_logger(), "Interrupted while waiting

for response. Exiting.");
}

rclcpp::shutdown();
return 0;

}

Execute in WebShell #1

[]: cd ~/ros2_ws/src/cpp_unit_3_services
touch src/cpp_simple_service_dummy_server.cpp

C++ Program {3.4}: cpp_simple_service_dummy_server.cpp

[]: #include <inttypes.h>

#include <memory>

#include "rclcpp/rclcpp.hpp"

#include "gazebo_msgs/srv/delete_model.hpp"

ROS2 BASICS IN 5 DAYS | 84

4 - Services in ROS

using DeleteModel = gazebo_msgs::srv::DeleteModel;
rclcpp::Node::SharedPtr g_node = nullptr;

void handle_service(
const std::shared_ptr<rmw_request_id_t> request_header,
const std::shared_ptr<DeleteModel::Request> request,
const std::shared_ptr<DeleteModel::Response> response)

{
(void)request_header;
RCLCPP_INFO(
g_node->get_logger(),
"Incoming request\nModel-To_Delete-Name: %s",

request->model_name.c_str());

response->success = true;
response->status_message = "The Model "+request->model_name+" was

deleted.";
}

int main(int argc, char ** argv)
{

rclcpp::init(argc, argv);
g_node = rclcpp::Node::make_shared("cpp_simple_service_server");
auto server =

g_node->create_service<DeleteModel>("/gazebo/delete_model",
handle_service);

rclcpp::spin(g_node);
rclcpp::shutdown();
g_node = nullptr;
return 0;

}

cpp_simple_service_dummy_server.cpp
Now, we make the necessary changes to the CMakeLists.txt to compile the client and
dummy_server and install them in our workspace.

Setup {3.4}: CMakeLists.txt

[]: cmake_minimum_required(VERSION 3.5)
project(cpp_unit_3_services)

Default to C99

if(NOT CMAKE_C_STANDARD)
set(CMAKE_C_STANDARD 99)

endif()

Default to C++14

ROS2 BASICS IN 5 DAYS | 85

4 - Services in ROS

if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)

endif()

if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic)

endif()

find dependencies

find_package(ament_cmake REQUIRED)
find_package(std_msgs REQUIRED)
find_package(rclcpp REQUIRED)
find_package(gazebo_msgs REQUIRED)

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
the following line skips the linter which checks for copyrights

remove the line when a copyright and license is present in all

source files
set(ament_cmake_copyright_FOUND TRUE)
the following line skips cpplint (only works in a git repo)

remove the line when this package is a git repo

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

endif()

function(custom_executable target)
add_executable(${target}_node src/${target}.cpp)

ament_target_dependencies(${target}_node
"gazebo_msgs"
"rclcpp"
"std_msgs")

install(TARGETS ${target}_node

DESTINATION lib/${PROJECT_NAME})
endfunction()

Adding Services

custom_executable(cpp_simple_service_client)
custom_executable(cpp_simple_service_dummy_server)

ament_package()

And now, we compile the whole workspace:

Execute in WebShell #2

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws

ROS2 BASICS IN 5 DAYS | 86

4 - Services in ROS

We compile everythin in the ws except the packages we dont want.

colcon build --symlink-install --packages-skip
NAME_OF_NONCOMPILE_PACKAGE

Or compile only the package when you do changes:

colcon build --symlink-install --packages-select cpp_unit_3_services

Execute in WebShell #2

[]: # Check that your Client And server binaries were generated

ll ~/ros2_ws/install/cpp_unit_3_services/lib/cpp_unit_3_services/cpp_s
imple_service_client_node
ll ~/ros2_ws/install/cpp_unit_3_services/lib/cpp_unit_3_services/cpp_s
imple_service_dummy_server_node

WebShell #1 Output

[]: lrwxrwxrwx 1 user user 75 Dec 19 18:32 /home/user/ros2_ws/install/cpp_
unit_3_services/lib/cpp_unit_3_services/cpp_simple_service_client_node
-> /home/user/ros2_ws/build/cpp_unit_3_services/cpp_simple_service_cli
ent_node*
lrwxrwxrwx 1 user user 81 Dec 19 18:32 /home/user/ros2_ws/install/cpp_
unit_3_services/lib/cpp_unit_3_services/cpp_simple_service_dummy_serve
r_node -> /home/user/ros2_ws/build/cpp_unit_3_services/cpp_simple_serv
ice_dummy_server_node*

As you can see, the executables that will be run are softlinks to the binaries build, found in the
build folder. Remember that we will always execute the install elements, not the build directly.

And now, we compile:

Now, let’s execute both client/dummy-server to check that they work:

Execute in WebShell #2: ROS2 Service CLIENT
ROS2 doesn’t always have the DoubleTab completion working at the moment, but in this case,
you CAN use it for auto completing and checking that the system correctly finds the path to the
executable.

[]: . /home/user/.bashrc_ros2
ros2 run cpp_unit_3_services cpp_simple_service_client_node

Execute in WebShell #3: ROS2 Service Server Dummy

[]: . /home/user/.bashrc_ros2
ros2 run cpp_unit_3_services cpp_simple_service_dummy_server_node

WebShell #1 Output

ROS2 BASICS IN 5 DAYS | 87

4 - Services in ROS

[]: [INFO] [cpp_simple_service_client]: service not available, waiting
again...
[INFO] [cpp_simple_service_client]: service not available, waiting
again...
[[INFO] [cpp_simple_service_client]: Client request->model_name :
bowl_1
[INFO] [cpp_simple_service_client]: Result-Success : True
[INFO] [cpp_simple_service_client]: Result-Status: The Model bowl_1
was deleted.

The service not available will be prompted during the time that you don’t launch the server
WebShell #2 Output

[]: [INFO] [cpp_simple_service_server]: Incoming request
Model-To_Delete-Name: bowl_1

Exercise 3.1
Great, now it’s time to test it in the real simulation. For that, we will have to reuse the program that
we did to be able to communicate through standard services for the reasons mentioned then. So,
you will have to do two things:

• Change the name of the service to connect to in the cpp_simple_service_client_node
• Change the type of service messages used, because remember that the service uses

std_srvs/Empty.srv messages.
• Change the model to be deleted in the bridge_delete_model_server.cpp and recompile in

ROS1.

[]: service_name = '/dummy_gazebo/delete_model' --> service_name =
'/my_bridge_delete_model'
service_message_type = 'gazebo_msgs/DeleteModel.srv' -->
service_message_type = 'std_srvs/Empty.srv'
Model to remove now --> "cafe_table"

Execute in WebShell #1
Remember that whenever you interact with ROS1, you need to launch ROS1-Bridge.

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2 ROS1 Service that we created in ROS1

[]: . /home/user/.bashrc_ros1
rosrun my_bridge_ros1_pkgs bridge_delete_model_server_node

Execute in WebShell #3

ROS2 BASICS IN 5 DAYS | 88

4 - Services in ROS

[]: . /home/user/.bashrc_ros2
ros2 run cpp_unit_3_services cpp_simple_service_client_ex3_1_node

##
Solutions
Please try to do it by yourself unless you get stuck or need some inspiration. You will learn much
more if you fight through each exercise.

Follow this link to open the solutions for the Services Part 1:Cpp Services Part 1 Solutions
Now, let’s create a launch file to do the exact same thing you did in Exercise 3.1:

Execute in WebShell #1

[]: cd ~/ros2_ws/src/cpp_unit_3_services
mkdir launch
touch launch/start_cpp_simple_service_client_ex3_1.cpp.launch.py
chmod +x launch/start_cpp_simple_service_client_ex3_1.cpp.launch.py

C++ Program {3.5}: start_ cpp_simple_service_client_ex3_1.cpp.launch.py

[]: """Launch cpp_simple_service_client_node_ex3_1"""

from launch import LaunchDescription
import launch_ros.actions

def generate_launch_description():
return LaunchDescription([

launch_ros.actions.Node(
package='cpp_unit_3_services',

node_executable='cpp_simple_service_client_ex3_1_node',
output='screen'),

])

cpp_simple_service_client_ex3_1.cpp.launch.py
And add the following line to to the CMakelists.txt:

[]: # Install launch files.

install(DIRECTORY
launch
DESTINATION share/${PROJECT_NAME}/

)

We now compile and execute:

Execute in WebShell #1

ROS2 BASICS IN 5 DAYS | 89

4 - Services in ROS

Remember that whenever you interact with ROS1, you need to launch ROS1-Bridge.

[]: . /home/user/.bashrc_bridge
export ROS_MASTER_URI=http://localhost:11311
ros2 run ros1_bridge dynamic_bridge

Execute in WebShell #2 ROS1 Service that we created in ROS1

[]: . /home/user/.bashrc_ros1
rosrun my_bridge_ros1_pkgs bridge_delete_model_server_node

Execute in WebShell #3

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws
colcon build --symlink-install --packages-select cpp_unit_3_services
ros2 launch cpp_unit_3_services
start_cpp_simple_service_client_ex3_1.cpp.launch.py

WebShell #3 Output

[]: [INFO] [launch]: process[cpp_simple_service_client_ex3_1_node-1]:
started with pid [25863]
[INFO] [cpp_simple_service_client_ex3_1]: service not available,
waiting again...
[INFO] [cpp_simple_service_client_ex3_1]: service not available,
waiting again...
[INFO] [cpp_simple_service_client_ex3_1]: Client Requested to remove
model.
[INFO] [cpp_simple_service_client_ex3_1]: Result-Success.
[INFO] [launch]: process[cpp_simple_service_client_ex3_1_node-1]:
process has finished cleanly

But don’t get too excited deleting objects or you’ll end up without a robot.

ROS2 BASICS IN 5 DAYS | 90

Unit 4. Services in ROS Part 2

ROS2 BASICS IN 5 DAYS

Services in ROS2 Part 2

BB8 Robot

• ROSject Link: https://bit.ly/2FKJkd6

• Robot: BB-8

Estimated time to completion: 3 hours What will you learn with this unit?

• How to give a service
• How to create your own service server message

ROS2 BASICS IN 5 DAYS | 91

4 - Services in ROS

Part 2: How to give a Service

Here we will reinforce what you already did briefly in previous parts of this unit, which is create a
server.

Example 3.7
This is what we are going to do in this example:

• Inside the src folder of the package cpp_unit_3_services, which was created in a previous
unit, create a new file named empty_service_server.cpp.

• Create a service server that uses std_srvs/Empty.srv messages, and when called, it prints
a log-info message. We will include that message by: #include “std_srvs/srv/empty.h”.
The installed includes will be found here: /opt/ros/bouncy/include/std_srvs.

• Create a launch file for launching this code.

• Do the necessary modifications to your CMakeLists.txt file, and compile the package.

• Execute the launch file to run the executable.

Execute in WebShell #1

[]: cd ~/ros2_ws/src/cpp_unit_3_services
touch src/empty_service_server.cpp

C++ Program {3.2}: empty_service_server.cpp

[]: #include <inttypes.h>

#include <memory>

#include "rclcpp/rclcpp.hpp"

#include "std_srvs/srv/empty.hpp"

using Empty = std_srvs::srv::Empty;
rclcpp::Node::SharedPtr g_node = nullptr;

void my_handle_service(
const std::shared_ptr<rmw_request_id_t> request_header,
const std::shared_ptr<Empty::Request> request,
const std::shared_ptr<Empty::Response> response)

{
(void)request_header;
RCLCPP_INFO(g_node->get_logger(),"My_callback has been called");

}

int main(int argc, char ** argv)
{

rclcpp::init(argc, argv);
g_node = rclcpp::Node::make_shared("empty_service_server");

ROS2 BASICS IN 5 DAYS | 92

4 - Services in ROS

auto server = g_node->create_service<Empty>("/my_service",
my_handle_service);

rclcpp::spin(g_node);
rclcpp::shutdown();
g_node = nullptr;
return 0;

}

Now, we make the necessary changes to the CMakeLists.txt to compile it. For that, just add this
new line in the CMakelists.txt:

[]: custom_executable(empty_service_server)

And add some dependecies related to std_srvs

[]: find_package(std_srvs REQUIRED)
...
add_executable(${target}_node src/${target}.cpp)

ament_target_dependencies(${target}_node
"gazebo_msgs"
"rclcpp"
"std_msgs"
"std_srvs")

...

Your CmakeLists.txt should look something like this:

Setup {3.1}: CMakeLists.txt

[]: cmake_minimum_required(VERSION 3.5)
project(cpp_unit_3_services)

Default to C99

if(NOT CMAKE_C_STANDARD)
set(CMAKE_C_STANDARD 99)

endif()

Default to C++14

if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)

endif()

if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic)

endif()

find dependencies

ROS2 BASICS IN 5 DAYS | 93

4 - Services in ROS

find_package(ament_cmake REQUIRED)
find_package(std_msgs REQUIRED)
find_package(rclcpp REQUIRED)
find_package(gazebo_msgs REQUIRED)
find_package(std_srvs REQUIRED)

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
the following line skips the linter which checks for copyrights

remove the line when a copyright and license is present in all

source files
set(ament_cmake_copyright_FOUND TRUE)
the following line skips cpplint (only works in a git repo)

remove the line when this package is a git repo

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

endif()

function(custom_executable target)
add_executable(${target}_node src/${target}.cpp)

ament_target_dependencies(${target}_node
"gazebo_msgs"
"rclcpp"
"std_msgs"
"std_srvs")

install(TARGETS ${target}_node

DESTINATION lib/${PROJECT_NAME})
endfunction()

Adding Services

custom_executable(cpp_simple_service_client)
custom_executable(cpp_simple_service_dummy_server)
custom_executable(cpp_simple_service_client_ex3_1)
custom_executable(empty_service_server)

ament_package()

Install launch files.

install(DIRECTORY
launch
DESTINATION share/${PROJECT_NAME}/

)

Now, we make the necessary changes to the package.xml to compile it. For that, just add this
new line in the CMakelists.txt:

ROS2 BASICS IN 5 DAYS | 94

4 - Services in ROS

[]: <depend>std_srvs</depend>

Your package.xml should look something like this:

Setup {3.2}: package.xml

[]: <?xml version="1.0"?>

<?xml-model href="http://download.ros.org/schema/package_format2.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="2">

<name>cpp_unit_3_services</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="user@todo.todo">user</maintainer>
<license>TODO: License declaration</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>std_msgs</depend>
<depend>rclcpp</depend>
<depend>gazebo_msgs</depend>
<depend>std_srvs</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

And now, we compile the whole cpp_unit_3_services to update the changes:

Execute in WebShell #1

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws
colcon build --symlink-install --packages-select cpp_unit_3_services

WebShell #1 Output

[]: Starting >>> cpp_unit_3_services
--- stderr: cpp_unit_3_services
/home/user/ros2_ws/src/cpp_unit_3_services/src/empty_service_server.cp
p: In function ‘void
my_handle_service(std::shared_ptr<rmw_request_id_t>,
std::shared_ptr<std_srvs::srv::Empty_Request_<std::allocator<void> >
>, std::shared_ptr<std_srvs::srv::Empty_Response_<std::allocator<void>

ROS2 BASICS IN 5 DAYS | 95

4 - Services in ROS

> >)’:
/home/user/ros2_ws/src/cpp_unit_3_services/src/empty_service_server.cp
p:11:43: warning: unused parameter ‘request’ [-Wunused-parameter]

const std::shared_ptr<Empty::Request> request,
^~~~~~~

/home/user/ros2_ws/src/cpp_unit_3_services/src/empty_service_server.cp
p:12:44: warning: unused parameter ‘response’ [-Wunused-parameter]

const std::shared_ptr<Empty::Response> response)
^~~~~~~~

Finished <<< cpp_unit_3_services [2.20s]

Summary: 1 package finished [2.32s]
1 package had stderr output: cpp_unit_3_services

As you can see in the output, it warns you that the request and response variables are not
used. This is normal because the Empty.srv doesn’t really care about the call data and it doesn’t
respond in any way.

Check that the binary was generated from your new server:

Execute in WebShell #1

[]: # Check that your Client And server binaries were generated

ll ~/ros2_ws/install/cpp_unit_3_services/lib/cpp_unit_3_services/empty
_service_server_node

WebShell #1 Output

[]: lrwxrwxrwx 1 ubuntu ubuntu 72 Dec 10 18:42 /home/ubuntu/ros2_ws/instal
l/cpp_unit_3_services/lib/cpp_unit_3_services/empty_service_server_nod
e -> /home/ubuntu/ros2_ws/build/cpp_unit_3_services/empty_service_serv
er_node*

Execute in WebShell #1

[]: . /home/user/.bashrc_ros2
ros2 run cpp_unit_3_services empty_service_server_node

Did something happen? Of course not! At the moment, you have just created and started the
Service Server. So basically, you have made this service available for anyone to call it.

This means that if you do a rosservice list, you will be able to visualize this service among the
list of available services.

Execute in WebShell #2

[]: . /home/user/.bashrc_ros2
ros2 service list

ROS2 BASICS IN 5 DAYS | 96

4 - Services in ROS

Among the list of all available services, you should see the /my_service service.

[]: /empty_service_server/describe_parameters
/empty_service_server/get_parameter_types
/empty_service_server/get_parameters
/empty_service_server/list_parameters
/empty_service_server/set_parameters
/empty_service_server/set_parameters_atomically
/my_service

Now, you have to actually CALL it. So, call the /my_service service manually. Remember the
calling structure discussed in the previous chapter and don’t forget that in this version of ROS2,
TAB-TAB to autocomplete the structure doesn’t work 100% for the Service messages. It will
find that /my_service uses std_srvs/Empty messages, but it won’t automaticaly create the
message to be sent.

Execute in WebShell #2

[]: ros2 service call /my_service std_srvs/Empty '{}'

Did it work? You should’ve seen the message, ‘My callback function has been called’ printed at
the output of the shell where you executed the service server code. And in the shell you executed
the call, it should have given you some info that the call went well.

WebShell #1 Output

[]: [INFO] [empty_service_server]: My_callback has been called

WebShell #2 Output

[]: requester: making request: std_srvs.srv.Empty_Request()

response:
std_srvs.srv.Empty_Response()

We have to clear up that this is a very simple example. Normally, the request and response
variables are used. An example is the dummy_server you created in a previous chapter. For that
case, you were passing the name of the object to delete to the Service Server in a variable called
model_name. So. if you want to access the value of that model_name variable in the Service
Server, you would have to do it like this:

[]: request->model_name

Quite simple, right?

And to return the RESPONSE of the service, you have to access the variables in the RE-
SPONSE part of the message. It would be like this:

ROS2 BASICS IN 5 DAYS | 97

4 - Services in ROS

[]: response->success = true;
response->status_message = "The Model "+request->model_name+" was
deleted.";

As you can see, you don’t explicitly return anything. That’s because you are using a pointer to
that variable that you can write and it will be updated outside immediately.

And why do we use request and response for accessing the REQUEST and RESPONSE
parts of the service message? Well, it’s because we are defining these variables here:

[]: void handle_service(
const std::shared_ptr<rmw_request_id_t> request_header,
const std::shared_ptr<DeleteModel::Request> request,
const std::shared_ptr<DeleteModel::Response> response)

Exercise 3.2

• The objective of this exercise is to create a service that, when called, makes BB8 robot move
in a square-like trajectory.

• You can work on a new package or use one of the ones you have already created.

• Create a C++ file that has a class inside. This class has to allow the movement of the BB-8
in a square-like movement {Fig-3.1}. This class could be called, for reference, MoveBB8.
And the C++ file that contains it could be called move_bb8.cpp. To move the BB8 robot,
you just have to write into the /cmd_vel topic, as you did in the Topics Units. Bear in mind
that although this is a simulation, BB8 has weight and, therefore, it won’t stop immediately
due to inertia. Also, when turning, friction and inertia will be playing a role. Remember that
by only moving through /cmd_vel, you don’t have a way of checking if it turned the way you
wanted it to (it’s called an open loop system). . . unless, of course, you find a way to have
some positional feedback information. That’s a challenge for advanced AstroMech builders
(if you want to try, think about using the /odom topic). But for considering the movement, you
just have to perform more or less a square movement. It doesn’t have to be perfect.

• Add a Service Server that accepts an Empty Service message and activates the square
movement. This service could be called /move_bb8_in_square This activation will be
done through a call to the Class that you have just generated, called MoveBB8. For that,
you have to create a very similar C++ file as empty_service_server.cpp. You could call it
bb8_move_in_square_service_server.cpp.

• Create a launch file called start_bb8_move_in_square_service_server.launch.py. Inside
it, you have to start a node that launches the bb8_move_in_square_service_server.cpp.

• Launch start_bb8_move_in_square_service_server.launch.py and check that when
called through the WebShell, BB8 moves in a square.

• Create a new C++ file, called bb8_move_in_square_service_client.cpp, which calls
the service /move_bb8_in_square. Remember how it was done in the pre-
vious chapter: Services Part 1. Then, generate a new launch file, called
call_bb8_move_in_square_service_server.launch.py, which executes the code in the
bb8_move_in_square_service_client.cpp file.

ROS2 BASICS IN 5 DAYS | 98

4 - Services in ROS

• Finally, when you launch this call_bb8_move_in_square_service_server.launch file, BB8
should move in a square.

Fig.3.1 - BB8 Square Movement Diagram

Fig.3.1 - BB8 Square Movement Diagram

Solution Exercise 3.2
Please try to do it by yourself unless you get stuck or need some inspiration. You will learn much
more if you fight through each exercise.

Follow this link to open the solutions for the Services Part 2:Services Part 2 Solutions

How to create your own service message

Create a New Package

In ROS2, the custom message topics and services have to be created in a CPP Package. It
could be done in the same package we have been using for all the examples. But we are going to
create a new package, so we can practice importing from different packages.

So, we will create a new package for the creation of our custom service messages:

Execute in WebShell #1

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws/src
ros2 pkg create unit_3_services_custom_msgs --dependencies std_msgs
rclcpp
cd ~/ros2_ws
We compile only our unit_3_services_custom_msgs package, nothing

ROS2 BASICS IN 5 DAYS | 99

4 - Services in ROS

more
colcon build --symlink-install --packages-select
unit_3_services_custom_msgs

WebShell #1 Output

[]: going to create a new package
package name: unit_3_services_custom_msgs
destination directory: /home/user/ros2_ws/src
package format: 2
version: 0.0.0
description: TODO: Package description
maintainer: ['user <user@todo.todo>']
licenses: ['TODO: License declaration']
build type: ament_cmake
dependencies: ['std_msgs', 'rclcpp']
creating folder ./unit_3_services_custom_msgs
creating ./unit_3_services_custom_msgs/package.xml
creating source and include folder
creating folder ./unit_3_services_custom_msgs/src
creating folder
./unit_3_services_custom_msgs/include/unit_3_services_custom_msgs
creating ./unit_3_services_custom_msgs/CMakeLists.txt

Create a Custom Service Message

You can also create the MyCustomServiceMessage.srv through the IDE, if you don’t feel
confortable with vim.

The MyCustomServiceMessage.srv could be something like this:

Execute in WebShell #1

[]: cd ~/ros2_ws/src/unit_3_services_custom_msgs
mkdir srv
touch srv/MyCustomServiceMessage.srv

EXTRA {3.6}: MyCustomServiceMessage.srv

[]: float64 radius # The distance of each side of the square

int32 repetitions # The number of times BB-8 has to execute the

square movement when the service is called

bool success # Did it achieve it?

Prepare CMakeLists.txt and package.xml for Custom Service Compilation in ROS2

We would have to add changes to the following files:

ROS2 BASICS IN 5 DAYS | 100

4 - Services in ROS

• CMakeLists.txt: We have to add the necessary functions to generate the service messages
wrappers. Also add dependencies that your custom message needs.

• package.xml: Add the dependencies that your custom message needs

Setup {3.2}: CMakeLists.txt

[]: cmake_minimum_required(VERSION 3.5)
project(unit_3_services_custom_msgs)

Default to C99

if(NOT CMAKE_C_STANDARD)
set(CMAKE_C_STANDARD 99)

endif()

Default to C++14

if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)

endif()

if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic)

endif()

find dependencies

find_package(ament_cmake REQUIRED)
find_package(std_msgs REQUIRED)
find_package(rclcpp REQUIRED)

For Message Generation

find_package(builtin_interfaces REQUIRED)
find_package(rosidl_default_generators REQUIRED)

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
the following line skips the linter which checks for copyrights

remove the line when a copyright and license is present in all

source files
set(ament_cmake_copyright_FOUND TRUE)
the following line skips cpplint (only works in a git repo)

remove the line when this package is a git repo

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

endif()

rosidl_generate_interfaces(unit_3_services_custom_msgs
"srv/MyCustomServiceMessage.srv"

ament_package()

ROS2 BASICS IN 5 DAYS | 101

4 - Services in ROS

We needed to add the following packages, responsible for the topics and services message
generators in ROS2:

[]: find_package(builtin_interfaces REQUIRED)
find_package(rosidl_default_generators REQUIRED)

rosidl_generate_interfaces(unit_3_services_custom_msgs
"srv/MyCustomServiceMessage.srv"

Setup {3.2}: package.xml

[]: <?xml version="1.0"?>

<?xml-model href="http://download.ros.org/schema/package_format2.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>unit_3_services_custom_msgs</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="ubuntu@todo.todo">ubuntu</maintainer>
<license>TODO: License declaration</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>std_msgs</depend>
<depend>rclcpp</depend>
<depend>builtin_interfaces</depend>
<depend>rosidl_default_generators</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>

<member_of_group>rosidl_interface_packages</member_of_group>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

We needed to add the following dependencies, which are for message generation and for any
dependencies added in the custom message:

[]: <depend>builtin_interfaces</depend>
<depend>rosidl_default_generators</depend>

<member_of_group>rosidl_interface_packages</member_of_group>

ROS2 BASICS IN 5 DAYS | 102

4 - Services in ROS

We add this member_of_group to avoid this error:

[]: CMake Error at /opt/ros/bouncy/share/rosidl_cmake/cmake/rosidl_generat
e_interfaces.cmake:129 (message):

Packages installing interfaces must include
'<member_of_group>rosidl_interface_packages</member_of_group>' in

their
package.xml

And we have to change the package version to 3, otherwise we won’t be able to use mem-
ber_group.

[]: <package format="3">

More info: Documentation

Compile and generate the Custom Messages

Execute in WebShell #1

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws
We compile only our unit_3_services_custom_msgs package, nothing

more
colcon build --symlink-install --packages-select
unit_3_services_custom_msgs

WebShell #1 Output

[]: Starting >>> unit_3_services_custom_msgs
[Processing: unit_3_services_custom_msgs]
Finished <<< unit_3_services_custom_msgs [31.0s]

We check that the messages were generated:

Execute in WebShell #1
VERY IMPORTANT: After the message generation, you have to SOURCE AGAIN. Otherwise,
you won’t be able to see the messages generated through the ROS2 service commands, and you
will think that it didn’t work.

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws
Lista ll the service messages available and filter by name

ros2 srv list | grep
unit_3_services_custom_msgs/MyCustomServiceMessage
Show contents of message

ros2 srv show unit_3_services_custom_msgs/MyCustomServiceMessage

ROS2 BASICS IN 5 DAYS | 103

4 - Services in ROS

WebShell #1 Output

[]: unit_3_services_custom_msgs/MyCustomServiceMessage

float64 radius # The distance of each side of the square

int32 repetitions # The number of times BB-8 has to execute the

square movement when the service is called

bool success # Did it achieve it?

If you had this output, the message was generated.

It’s also nice to see where the include file is saved because you will need to be sure that
it’s done if you want to import the messages and use them.

Execute in WebShell #1

[]: # Check that the gazebo_msgs were compiled for cpp

ll ~/ros2_ws/install/unit_3_services_custom_msgs/include/unit_3_servic
es_custom_msgs/srv/my_custom_service_message.hpp

WebShell #1 Output

[]: lrwxrwxrwx 1 ubuntu ubuntu 137 Dec 7 12:34 /home/ubuntu/ros2_ws/insta
ll/unit_3_services_custom_msgs/include/unit_3_services_custom_msgs/srv
/my_custom_service_message.hpp -> /home/ubuntu/ros2_ws/build/unit_3_se
rvices_custom_msgs/rosidl_generator_cpp/unit_3_services_custom_msgs/sr
v/my_custom_service_message.hpp

Great! So, to use it, you just have to add the following include in your cpp file:

[]: #include

"unit_3_services_custom_msgs/srv/my_custom_service_message.hpp"

Create a service server that uses this custom message: MyCustomServiceMessage

To test that everything works, we will create a new service server that uses this custom message,
and then call it through a python service client.

Execute in WebShell #1

[]: cd ~/ros2_ws/src/cpp_unit_3_services
touch src/custom_service_server.cpp

C++ Program {3.3}: custom_service_server.cpp

ROS2 BASICS IN 5 DAYS | 104

4 - Services in ROS

[]: #include <inttypes.h>

#include <memory>

#include "rclcpp/rclcpp.hpp"

#include

"unit_3_services_custom_msgs/srv/my_custom_service_message.hpp"

using MyCustomServiceMessage =
unit_3_services_custom_msgs::srv::MyCustomServiceMessage;
rclcpp::Node::SharedPtr g_node = nullptr;

void handle_service(
const std::shared_ptr<rmw_request_id_t> request_header,
const std::shared_ptr<MyCustomServiceMessage::Request> request,
const std::shared_ptr<MyCustomServiceMessage::Response> response)

{
(void)request_header;
RCLCPP_INFO(g_node->get_logger(),"Incoming request\nradius: %f",

request->radius);
RCLCPP_INFO(g_node->get_logger(),"Incoming request\nrepetitions:

%i", request->repetitions);

response->success = true;
}

int main(int argc, char ** argv)
{

rclcpp::init(argc, argv);
g_node = rclcpp::Node::make_shared("custom_service_server");
auto server =

g_node->create_service<MyCustomServiceMessage>("/my_custom_service",
handle_service);

RCLCPP_INFO(g_node->get_logger(),"CustomServiceServer...READY");
rclcpp::spin(g_node);
rclcpp::shutdown();
g_node = nullptr;
return 0;

}

Execute in WebShell #1

[]: cd ~/ros2_ws/src/cpp_unit_3_services
touch src/custom_service_client.cpp

C++ Program {3.3}: custom_service_client.cpp

[]: #include <chrono>

#include <cinttypes>

#include <iostream>

#include <memory>

ROS2 BASICS IN 5 DAYS | 105

4 - Services in ROS

#include <string>

#include "rclcpp/rclcpp.hpp"

#include

"unit_3_services_custom_msgs/srv/my_custom_service_message.hpp"

using MyCustomServiceMessage =
unit_3_services_custom_msgs::srv::MyCustomServiceMessage;

MyCustomServiceMessage::Response::SharedPtr send_request(
rclcpp::Node::SharedPtr node,
rclcpp::Client<MyCustomServiceMessage>::SharedPtr client,
MyCustomServiceMessage::Request::SharedPtr request)

{

auto result = client->async_send_request(request);
// Wait for the result.
if (rclcpp::spin_until_future_complete(node, result) ==

rclcpp::executor::FutureReturnCode::SUCCESS)
{

RCLCPP_INFO(node->get_logger(),"Client request->radius: %f",
request->radius);

RCLCPP_INFO(node->get_logger(),"Client request->repetitions: %i",
request->repetitions);

return result.get();
} else {

RCLCPP_ERROR(node->get_logger(), "service call failed :(");
return NULL;

}

}

int main(int argc, char ** argv)
{

// Force flush of the stdout buffer.
setvbuf(stdout, NULL, _IONBF, BUFSIZ);

rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("custom_service_client");
auto topic = std::string("/my_custom_service");
auto client = node->create_client<MyCustomServiceMessage>(topic);
auto request =

std::make_shared<MyCustomServiceMessage::Request>();

// Fill In The variables of the Custom Service Message
request->radius = 2.3;

ROS2 BASICS IN 5 DAYS | 106

4 - Services in ROS

request->repetitions = 2;

while (!client->wait_for_service(std::chrono::seconds(1))) {
if (!rclcpp::ok()) {

RCLCPP_ERROR(node->get_logger(), "Interrupted while waiting for
the service. Exiting.");

return 0;
}
RCLCPP_INFO(node->get_logger(), "service not available, waiting

again...");
}

auto result = send_request(node, client, request);
if (result) {

auto result_str = result->success ? "True" : "False";

RCLCPP_INFO(node->get_logger(), "Result-Success : %s",
result_str);

} else {
RCLCPP_ERROR(node->get_logger(), "Interrupted while waiting

for response. Exiting.");
}

rclcpp::shutdown();
return 0;

}

Now, we make the necessary changes to the CMakeLists.txt to compile it. For that, we have to
add the custom_executable method call for the new cpp files:

[]: custom_executable(custom_service_client)
custom_executable(custom_service_server)

And add some dependecies related to unit_3_services_custom_msgs:

[]: find_package(unit_3_services_custom_msgs REQUIRED)
...
add_executable(${target}_node src/${target}.cpp)

ament_target_dependencies(${target}_node
"gazebo_msgs"
"rclcpp"
"std_msgs"
"std_srvs"
"unit_3_services_custom_msgs")

...

ROS2 BASICS IN 5 DAYS | 107

4 - Services in ROS

Your CmakeLists.txt should look something like this:

Setup {3.1}: CMakeLists.txt

[]: cmake_minimum_required(VERSION 3.5)
project(cpp_unit_3_services)

Default to C99

if(NOT CMAKE_C_STANDARD)
set(CMAKE_C_STANDARD 99)

endif()

Default to C++14

if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)

endif()

if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic)

endif()

find dependencies

find_package(ament_cmake REQUIRED)
find_package(std_msgs REQUIRED)
find_package(rclcpp REQUIRED)
find_package(gazebo_msgs REQUIRED)
find_package(std_srvs REQUIRED)
find_package(unit_3_services_custom_msgs REQUIRED)

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
the following line skips the linter which checks for copyrights

remove the line when a copyright and license is present in all

source files
set(ament_cmake_copyright_FOUND TRUE)
the following line skips cpplint (only works in a git repo)

remove the line when this package is a git repo

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

endif()

function(custom_executable target)
add_executable(${target}_node src/${target}.cpp)

ament_target_dependencies(${target}_node
"gazebo_msgs"
"rclcpp"
"std_msgs"
"std_srvs"

ROS2 BASICS IN 5 DAYS | 108

4 - Services in ROS

"unit_3_services_custom_msgs")
install(TARGETS ${target}_node

DESTINATION lib/${PROJECT_NAME})
endfunction()

Adding Services

custom_executable(cpp_simple_service_client)
custom_executable(cpp_simple_service_dummy_server)
custom_executable(cpp_simple_service_client_ex3_1)
custom_executable(empty_service_server)
custom_executable(custom_service_client)
custom_executable(custom_service_server)

ament_package()

Install launch files.

install(DIRECTORY
launch
DESTINATION share/${PROJECT_NAME}/

)

Now, we make the necessary changes to the package.xml to compile it. For that, just add this
new line in the CMakelists.txt:

[]: <depend>unit_3_services_custom_msgs</depend>

Your package.xml should look something like this:

Setup {3.2}: package.xml

[]: <?xml version="1.0"?>

<?xml-model href="http://download.ros.org/schema/package_format2.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="2">

<name>cpp_unit_3_services</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="user@todo.todo">user</maintainer>
<license>TODO: License declaration</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>std_msgs</depend>
<depend>rclcpp</depend>
<depend>gazebo_msgs</depend>
<depend>std_srvs</depend>
<depend>unit_3_services_custom_msgs</depend>

ROS2 BASICS IN 5 DAYS | 109

4 - Services in ROS

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

Now, let’s compile both the custom server and client:

Execute in WebShell #1:

[]: . /home/user/.bashrc_ros2
cd ~/ros2_ws
We compile only our cpp_unit_3_services package, nothing more

colcon build --symlink-install --packages-select cpp_unit_3_services

Now, we start the server and call it through the client:

Execute in WebShell #2: Launch Service Server

[]: . /home/user/.bashrc_ros2
ros2 run cpp_unit_3_services custom_service_server_node

Execute in WebShell #3: Start Client

[]: . /home/user/.bashrc_ros2
ros2 run cpp_unit_3_services custom_service_client_node

WebShell #2 Output

[]: [INFO] [custom_service_server]: CustomServiceServer...READY
[INFO] [custom_service_server]: Incoming request
radius: 2.300000
[INFO] [custom_service_server]: Incoming request
repetitions: 2

WebShell #3 Output

[]: [INFO] [custom_service_client]: Client request->radius: 2.300000
[INFO] [custom_service_client]: Client request->repetitions: 2
[INFO] [custom_service_client]: Result-Success : True

You can also call it through the command line for quick tests:

Execute in WebShell #2: Call the Server

ROS2 BASICS IN 5 DAYS | 110

4 - Services in ROS

[]: . /home/user/.bashrc_ros2
ros2 service call /my_custom_service
unit_3_services_custom_msgs/MyCustomServiceMessage '{radius:
5.1,repetitions: 7}'

WebShell #1 Output

[]: [INFO] [custom_service_server]: Incoming request
radius: 5.100000
[INFO] [custom_service_server]: Incoming request
repetitions: 7

Exercise 3.3
Modify the square_service_server.cpp and its client that you generated in the previous ex-
ercise 3.2 to be able to request different-sized squares and number of repetitions using the
unit_3_services_custom_msgs/MyCustomServiceMessage.

Fig.3.2 - BB8 Dynamic Square Diagram

Fig.3.2 - BB8 Dynamic Square Diagram

ROS2 BASICS IN 5 DAYS | 111

Unit 5. Debugging Tools

ROS2 BASICS IN 5 DAYS

Unit 5: Debugging Tools

Mara Robot

• ROSject Link: https://bit.ly/2Be6B3x
• Robot: MARA

NOTE: You will find instructions on how to launch this simulation in the Jupyter Notebook of the
ROSject.

Estimated time to completion: 1.5 hours What will you learn with this unit?

• Add Debugging ROS logs
• Basic use of RViz2 debugging tool

ROS2 BASICS IN 5 DAYS | 112

5 - Debugging Tools

One of the most difficult, but important, parts of robotics is: knowing how to turn your ideas
and knowledge into real projects. There is a constant in robotics projects: nothing works as
in theory. Reality is much more complex and, therefore, you need tools to discover what is going
on and find where the problem lies. That’s why debugging and visualization tools are essential
in robotics, especially when working with complex data formats, such as images, laser-scans,
pointclouds, or kinematic data. Examples are shown in {Fig-5.i} and {Fig-5.ii}.

Fig.5.i - Atlas Laser

Rviz Example 1

Fig.5.ii - PR2 Laser and PointCloud

ROS2 BASICS IN 5 DAYS | 113

5 - Debugging Tools

Rviz Example 2

So, here you will be presented with the most important tools for debugging your code and
visualizing what is really happening in your robot system.

ROS Debugging Messages

Logs allow you to print them on the screen, but also to store them in the ROS framework, so you
can classify, sort, filter, or something else.

In logging systems, there are always levels of logging, as shown in {Fig-5.1}. In ROS2 logs
case, there are five levels. Each level includes deeper levels. So, for example, if you use Error
level, all the messages for Error and Fatal will be shown. If your level is Warning, then all the
messages for levels Warning, Error, and Fatal will be shown.

ROS2 BASICS IN 5 DAYS | 114

5 - Debugging Tools

LOG Levels

Run the following C++ code:

Exercise 5.1

• Create a new package named logs_test. When creating the package, add rclcpp as de-
pendencies. .

• Inside the src folder of the package, create a new file named logger_example.cpp. Inside
this file, copy the contents of logger_example.cpp

• Create a launch file for launching this code.

• Do the necessary modifications to your CMakeLists.txt file, and compile the package.

• Execute the launch file to run your executable.

C++ Program {5.1}: logger_example.cpp

[]: #include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);
auto node = rclcpp::Node::make_shared("log_demo");
rclcpp::WallRate loop_rate(0.5);
rcutils_logging_set_logger_level(node->get_logger().get_name(),

RCUTILS_LOG_SEVERITY_DEBUG);

while (rclcpp::ok()) {

RCLCPP_DEBUG(node->get_logger(), "There is a missing droid");
RCLCPP_INFO(node->get_logger(), "The Emperor's cappuccino is

done");
RCLCPP_WARN(node->get_logger(), "Help me Obi-Wan Kenobi, you're my

only hope");

ROS2 BASICS IN 5 DAYS | 115

5 - Debugging Tools

RCLCPP_ERROR(node->get_logger(), "The rebels are breaking our
defenses");

RCLCPP_FATAL(node->get_logger(), "The DeathStar Is EXPLODING");
rclcpp::spin_some(node);
loop_rate.sleep();

}
rclcpp::shutdown();
return 0;

}

When compiling, you will probably see the following warning:

Compilation Warning

Just ignore it, it won’t affect the exercise.

You should see all of the ROS logs in the current nodes, running in the system.

Logs Output

Exercise 5.2
1- Change the LOG level in the previous code {logger_example.cpp} and see how the different
messages are printed or not, depending on the level selected.

ROS2 BASICS IN 5 DAYS | 116

5 - Debugging Tools

2- Remember that you will need to recompile the package each time you make a modifica-
tion in the code.

3- The line where you change the LOG level is the following:

[]: rcutils_logging_set_logger_level(node->get_logger().get_name(),
RCUTILS_LOG_SEVERITY_<LOG_LEVEL>);

Visualize Complex data and RViz2

And here you have it. The HollyMolly! The Millenium Falcon! The most important tool for ROS
debugging. . . .RVIZ2. RVIZ is a tool that allows you to visualize Images, PointClouds, Lasers,
Kinematic Transformations, RobotModels. . . The list is endless. You can even define your own
markers. It’s one of the reasons why ROS was so greatly accepted. Before RVIZ, it was really
difficult to know what the Robot was perceiving. And that’s the main concept: RVIZ is NOT a
simulation. I repeat: It’s NOT a simulation. RVIZ is a representation of what is being published in
the topics, by the simulation or the real robot.

RVIZ is a really complex tool and it would take you a whole course just to master it. Here,
you will get a glimpse of what it can give you.

1- Type the following command into WebShell #1:

Execute in WebShell #1

[]: source /opt/ros/crystal/setup.bash

[]: source /home/simulations/ros2_sims_ws/install/setup.bash

[]: rviz2

2- Then, go to the graphical interface to see the RVIZ2 GUI:

You will be greeted by a window like {Fig-5.9}:

Fig-5.9 - RVIZ Starting Window

ROS2 BASICS IN 5 DAYS | 117

5 - Debugging Tools

RVIZ Starting Window

Note: In case you don’t see the lower part of RViz2 (the Add button, etc.), double-click at
the top of the window to maximize it. Then, you’ll see it properly.
You need only to be concerned about a few elements to start enjoying RVIZ.

• Central Panel: Here is where all the magic happens. This is where the data will be shown.
It’s a 3D space that you can rotate (LEFT-CLICK PRESSED), translate (CENTER MOUSE
BUTTON PRESSED), and zoom in/out (LEFT-CLICK PRESSED).

• LEFT Displays Panel: Here is where you manage/configure all the elements that you wish to
visualize in the central panel. You only need to use two elements:

• In Global Options, you have to select the Fixed Frame that suits you for the visualization of
the data. It is the reference frame from which all the data will be referred to.

• The Add button. Clicking here will give you all of the types of elements that can be repre-
sented in RVIZ.

Go to RVIZ in the graphical interface and add a TF element. For that, click “Add” and select
the element TF in the list of elements provided, as shown in {Fig-5.10}.
Fig-5.10 - RVIZ Add element

ROS2 BASICS IN 5 DAYS | 118

5 - Debugging Tools

RVIZ Add element

• Go to the RVIZ2 Left panel, select the base_link as Fixed Frame, and make sure that the TF
element checkbox is checked. In a few moments, you should see all of the Robot’s Elements
Axis represented in the CENTRAL Panel.

Fig-5.11 - RVIZ TF’s

RVIZ TF’s

• Now, press “Add” and select RobotModel, as shown in {Fig-5.10}

• On the RobotModel options, set the “Description Source” to File.

ROS2 BASICS IN 5 DAYS | 119

5 - Debugging Tools

RVIZ Robot Model Configuration

• Finally, select the file named mara_robot_camera_top.urdf. You will find it at
/home/simulations/ros2_sims_ws/src/ros2_mara/MARA/mara_description/urdf.

URDF File Selection

You should now see the 3D model of the robot, as shown in {Fig-5.12}:

Fig-5.12 - RVIZ Robot Model

RVIZ Robot Model

• Now, go to WebShell #2 and enter the command to move the robot:

ROS2 BASICS IN 5 DAYS | 120

5 - Debugging Tools

Execute in WebShell #2

[]: source /opt/ros/crystal/setup.bash

[]: source /home/simulations/ros2_sims_ws/install/setup.bash

[]: roslaunch iri_wam_aff_demo start_demo.launch

You should see something like this:

Fig-5.13 - RVIZ TF

RVIZ Robot Model + TF

In {Fig-5.11}, you are seeing all of the transformation elements of the IRI Wam Simulation in
real-time. This allows you to see exactly what joint transformations are sent to the robot arm to
check if it’s working properly.

ROS2 BASICS IN 5 DAYS | 121

Final Recommendations

I have finished, now what?

ROS Development Studio (ROSDS)

ROSDS logo

ROSDS is the The Construct web based tool to program ROS robots online. It requires no in-
stallation in your computer. Hence, you can use any type of computer to work on it (Windows,
Linux or Mac). Additionally, free accounts are available. Create a free ROSDS account here:
http://rosds.online
You can use any of the many ROSjects available in order to apply all the things you’ve learned
during the Course. You just need to paste the ROSject link to your browser’s URL, and you will
automatically have the simulation prepared in your ROSDS workspace.

Down below you can check some examples of the Public Rosjects we provide:

ROS2 BASICS IN 5 DAYS | 122

Final Recommendations

ARIAC Competition

• ROSject Link: https://bit.ly/2t2px0t

Cartpole Reinforcement Learning

• ROSject Link: https://bit.ly/2t2uGWr

RobotX Challenge

ROS2 BASICS IN 5 DAYS | 123

Final Recommendations

• ROSject Link: https://bit.ly/2Tt4lw8

Want to learn more?

Robot Ignite Logo

Once you have finished the course, you can still learn a lot of interesting ROS subjects.

• Take more advanced courses that we offer at the Robot Ignite Academy, like Perception or
Navigation. Access the Academy here: http://www.robotigniteacademy.com

• Or, you can go to the ROS Wiki and check the official documentation of ROS, now with new
eyes.

Thank You and hope to see you soon

ROS2 BASICS IN 5 DAYS | 124

