5/24/2018 ros-extra-2

The
Construct

Learn and develop for robots with ROS

presents

ROS Developers Extra Class n2

How to use GPS to do autonomous navigation

This notebook is additional material for the ROS Developers Extra Class n.2 created and provided for free
by Ephson Guarko and Ricardo Tellez of The Construct (www.theconstructsim.com). You can distribute this
notebook as long as you provide copy of this paragraph with it.

Why this class?

This class is special because it is specially created for the ROS Agriculture group (http://rosagriculture.org/)
(even if anybody is welcomed). The goal is to make agricultural robots move autonomously in the fields
following a specific trajectory. This can be applied to the agricultural robots but also to other types of robots
like patrol robots, service robots or else.

Watch the following video by Kyler Laird (https://www.youtube.com/channel/lUCXRiYTIJu4ag3KIiEQKRFAmMQ)
about an autonomous tractor moving autonomously on the field.

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 1/19

file:///home/ricardo/Downloads/ROS_EXTRA_CLASS_2/www.theconstructsim.com
http://rosagriculture.org/
https://www.youtube.com/channel/UCXRiYTlJu4ag3KiEQkRFdmQ

5/24/2018 ros-extra-2

In []:

from IPython.display import YouTubeVideo
YouTubeVideo('XyneZo6KrB4')

How to use this material

You will need to have a free account at the ROS Development Studio (http://rds.theconstructsim.com). Get
the account and then follow the indications below.

You will also need to watch the Live Class. You can find it here (select next cell of this notebook and press
the play button):

In []:
YouTubeVideo('cmOplaq8cHc')

Today on ROS - EXTRA class n°2, we will be learning about how
to:

1. Record an outdoor trajectory we want the robot to reproduce
2. Make the robot reproduce the trajectory autonomously.
3. Everything using GPS

I hope you are not overwhelmed already? Don't worry the process is quite simple. The whole process works
in 4 steps:

1. Have the robot running

2. Start the GPS based navigation system

3. Record the points

4. Make the robot reproduce the recorded points

Step 1. Have the robot running

First thing you need to have is the robot with your sensors and actuators working under ROS.

For this class we are going to use a simulation of the Husky robot by Clearpath. Additionally we are going to
use some programs already created by Clearpath to show how to do navigation with GPS. We'll see where to
modify for your own robot.

. To start the simulation, run

In [1:

> roslaunch husky gazebo husky playpen.launch

You should get something like this:

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 2/19

http://rds.theconstructsim.com/

5/24/2018 ros-extra-2

Real Time: 00 00:03:03 ~
Sim Time: 00 00:24:41 n.n

Simulation log

. Before we do anything, let's check that the robot started correctly by moving it around using our
customized keyboard teleop script.

In []:

> rosrun keyboard control key teleop.py

Remember: having the simulation running is like having the robot. Instead of having the real robot, we have
the simulated robot. Hence, as the real robot, the simulation of the robot can do nothing without the proper
control programs. So let's see which ROS programs we should launch on the robot in order to make it
navigate as we want. The same would apply to the real robot.

Step 2. Have the navigation system running

We need to launch now the navigation system based on GPS. We learnt on the previous Extra Class how
to make that system work. You can check the class here (select next cell and press play):

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 3/19

5/24/2018 ros-extra-2

In [5]:
YouTubeVideo('ZomR1tVzilLM"')
Out[5]:

Extra Class: Outdoors Robot Navigation for ...

To launch the navigation system type:

In [1:

> roslaunch outdoor waypoint nav outdoor nav_sim.launch

This basically is doing:

1. Launching the map server with an empty map (to trick the move_base). Remember: only
requirements of that map are that it is completely empty, and that is large enough to cover the
whole area you want the robot to move on.

In []:
<!-- The map file that we are going to use -->

<arg name="map file" default="$(find keyboard control)/maps/floor map.yaml"/
>

<!-- Run map_serserver to provide map -->
<node name="map_ server" pkg="map_ server" type="map server" args="$(arg map f
ile)" />

1. Launching the GPS based localization system using the robot_localization package.

In [1:

<!-- Launch robot localization and navsat node-->

<include file="$(find outdoor waypoint nav)/launch/include/localization run_
sim.launch"/>

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 4/19

https://www.youtube.com/watch?v=ZomR1tVziLM

5/24/2018 ros-extra-2

. The robot localization (https:/iroscon.ros.org/2015/presentations/robot localization.pdf)

package. Basically this node integrates data from many sensor sources (wheel encoders, IMU,

Barometer, Sonar etc.) into usable format for the robot in ROS.

. The various data streams are computed using a Kalman filter and combined with the set 'sensor

transforms' to produce the Itf for the robot.

. The various data streams are computed using a Kalman filter to produce the lodom for the robot.

| amcl
| gmapping
| navsat tranSform node

"move_base_simple/goal”

geometry_msgs/PoseStamped

move_base L

| GPS \

global_planner

*kf localization_node

e

sensor transforms internal

IMU
Wheel Encoders *Kkf_localization_node | o ~ local_planner

Visual Odometry

 —

< global_costmap

e

-1
tf/tfMessage nav_msgs/Path recovery_behaviors

N

~—— local_costmap

Barometer

base controller

And so much more!

"emd_vel" | geometry_msgs/Twist

Source: http://wiki.ros.org/move_base

Image from Tom Moore's presentation at ROSCON2015

The localization system uses three different instances of robot_localization:

nav_ms

sense
sensor_ms
sensor_ms:

. One that computes the odometry of the robot using the odometry provided by the encoders of the

robot and the IMU.

In []:

<node pkg="robot localization" type="ekf localization node" name="ekf se odom" c

lear params="true"/>

It uses the following configuration (ekf_params.yaml).

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html

5/19

https://roscon.ros.org/2015/presentations/robot_localization.pdf

5/24/2018 ros-extra-2

In []:

ekf se odom: # Used only for broadcasting odom to base link transforms

frequency: 30

sensor timeout: 0.1
two d mode: true
transform time offset: 0.0
transform timeout: 0.0
print diagnostics: true
debug: false

map_ frame: map

odom_frame: odom

base link frame: base link
world frame: odom

Wheel odometry:

odomO@: /husky velocity controller/odom

odom@ config: [false, false, false,
false, false, false,
true, true, true,
false, false, false,
false, false, false]

The order of the boolean values are
#X,Y,2,

roll,pitch,yaw

#X,Y ,Z°

roll ,pitch’,yaw’

#X,Y",Z".

odom@ queue size: 10
odom@ nodelay: true

odom@ differential: false
odom@ relative: false

imu configure:

imu@: /imu/data

imu® config: [false, false, false,
true, true, false,
false, false, false,
true, true, true,
true, true, true]

imu® nodelay: false

imu@ differential: false

imu@ relative: false

imu® queue size: 10

imu® remove gravitational acceleration: true

use control: false

process noise covariance: [le-3, 0, 0,
) 0, 0, 0, 0, 0, 0,
0, le-3, 0,
) 0, 0, 0, 0, 0, 0,
0, 0, le-3,
) 0, 0, 0, 0, 0, 0,
0, 0, 0,
) 0, 0, 0, 0, 0, 0,

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html

6/19

5/24/2018 ros-extra-2

0, 0, 0, 0, 0.3, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.01, 0O, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.5, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0.5, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0.1, o0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0.3, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0.3, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0.3, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
) 0, 0, 0, 0.3, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0.3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0.3]
initial estimate covariance: [1le-9, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, le-9, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, le-9, 0O, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0 0, 1.0, O, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0 0, 0, 1.0, O, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0 0, 0, 0, le-9, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0 0, 0, 0, 0, 1.0, O,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1.0,
0, 0, 0, 0, 0, 0, 0,
0, 0 0, 0, 0, 0, 0, 0,
1.0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 1.0, 0, 0, 0, 0, 0,
0, 0 0, 0, 0, 0, 0, 0,
0, 0, 1.0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1.0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1.0, O, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1.0, O,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1.0]

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 7/19

5/24/2018 ros-extra-2

. You can learn how to select those parameters in this page of the official documentation
(http://docs.ros.org/lunar/api/robot_localization/html/configuring_robot_localization.html#configuring-
robot-localization).

. Also, this page (http://docs.ros.org/lunar/api/robot_localization/html/preparing_sensor_data.html)
includes a list of best practices when deciding which information to fuse.

. You can see an example of configuration of the robot_localization node for odometry calculation
by watching this Live Class that shows how to configure to merge IMU with encoder odometry.

In [6]:
YouTubeVideo('nQZeAafDEJE')
Out[6]:

ROS LIVE-Class#2: Merging Odometry and I...

. Another node that does the localization of the robot in /map coordinates. Basically it computes the
transform from /map to /odom

In [1:

<node pkg="robot localization" type="ekf localization node" name="ekf se map" cl
ear params="true">
<remap from="odometry/filtered" to="odometry/filtered map"/>
</node>

And this is the configuration for it:

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 8/19

http://docs.ros.org/lunar/api/robot_localization/html/configuring_robot_localization.html#configuring-robot-localization
http://docs.ros.org/lunar/api/robot_localization/html/preparing_sensor_data.html
https://www.youtube.com/watch?v=nQZeAafDEJE

5/24/2018 ros-extra-2

In [1:

ekf se map:
frequency: 30
sensor timeout: 0.1
two d mode: true
transform time offset: 0.0
transform timeout: 0.0
print diagnostics: true
debug: false

map_ frame: map

odom_frame: odom

base link frame: base link
world frame: map

Wheel odometry:

odomO@: /husky velocity controller/odom

odom@ config: [false, false, false,
false, false, false,
true, true, true,
false, false, true,
false, false, false]

odom@ queue size: 10

odom@ nodelay: true

odom@ differential: false

odom@ relative: false

GPS odometry:

odoml: /outdoor waypoint nav/odometry/gps

odoml config: [true, true, false,
false, false, false,
false, false, false,
false, false, false,
false, false, false]

odoml queue size: 10

odoml nodelay: true

odoml differential: false

odoml relative: false

imu configure:

imu0@: /imu/data

imu® config: [false, false, false,
true, true, false,
false, false, false,
true, true, true,
true, true, true]

imu@ nodelay: true

imu® differential: false

imu® relative: false

imu® queue size: 10

imu@ remove gravitational acceleration: true

use control: false

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 9/19

5/24/2018 ros-extra-2

process noise covariance: [1.0, O, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 1.0, O, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, le-3, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.3, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.3, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.01, 0O, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.5, 0, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0.5, 0
, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0.3, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0.3, O, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0.3, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0.3, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0.3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0.3]
initial estimate covariance: [1.0, O, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 1.0, O, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, le-9, 0O, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1.0, O, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0 0, 0, 1.0, O, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, le-9, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0 0, 0, 0, 0, 1.0, O,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1.0,
0, 0, 0, 0, 0, 0, 0,
0, 0 0, 0, 0, 0, 0, 0,
1.0, O, 0, 0, 0, 0, 0,
0, 0 0, 0, 0, 0, 0, 0,
0, 1.0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1.0, 0, 0, 0, 0,
0, 0 0, 0, 0, 0, 0, 0,
0, 0, 0, 1.0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1.0, O, 0,
0, 0 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1.0, O,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1.0]

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 10/19

5/24/2018 ros-extra-2

« Another node that computes provides the mechanisms to transform a GPS coordinate to a /map
coordinate

In [1:

<node pkg="robot localization" type="navsat transform node" name="navsat transfo

rm" clear_params="true" output="screen" >
<remap from="odometry/filtered" to="odometry/filtered map"/>
<remap from="gps/fix" to="/navsat/fix"/>
<remap from="imu/data" to="/imu/data"/>

</node>

The navsat_transform_node: This node basically does two things:

. Converts GPS data to UTM coordinate system.
. Publishes a transform from /utm to /map

It uses the received GPS data, IMU data and odometry

. Universal Transverse Mercator(UTM) Coordinate system uses a 2-dimensional Cartesian
coordinate system to give locations on the surface of the Earth. More here
(https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system)

Broadcaster: foutdoor_waypoint_naviekl se_mazp
Average rate: 25.167 Hz

Most recent transform : 2908.720 (0L010 sec old)

Buffer length: 4.490 sec

Broadeaster: Joutdoor_waypoint_nav/navsal_transform
Average rate: 10000.000 Hz
Most recent transform: 0,000 (2908.730 sec old)
Buffer length: 0.000 sec

Broadeastes: foutdoor_waypoint_naviekf_se_odom
Average rate: 25.223 Hz

Most recent transform: 2908710 (0L020 sec old)

Buffer length: 4.4380 sec

—

The configuration parameters for this node are the following (you can get an explanation of their meaning in
this documentation page (http://docs.ros.org/api/robot_localization/html/navsat transform_node.html)):

base_link

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 11/19

https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
http://docs.ros.org/api/robot_localization/html/navsat_transform_node.html

5/24/2018 ros-extra-2

In [1:

navsat transform:

frequency: 30

delay: 3.0

magnetic declination radians: 0.00 #0.168285 # For lat/long 43.500718, -80.5
46638 on Jun 1 2017

yaw offset: 1.570796327 # IMU reads @ facing magnetic north, not east

zero_altitude: true

broadcast utm transform: true

publish filtered gps: true

use odometry yaw: false

wait for datum: false

1. Launches the node that makes the robot move using path planning and obstacle avoidance. That
is the move_base node.

In []:

<!-- Run husky navigation to start move base -->
<include file="$(find husky navigation)/launch/move base nav.launch" />

Step 3. Record a trajectory

. Now to collect waypoints(gps coordinates), drive the robot using the key_teleop shell that you
launched above, and press the y-key to save the current robot location as a waypoint of the
trajectory.

You can also launch the following command, to view the corresponding latitudes and longitudes of the robot
as you drive around.

In [1:

> rostopic echo /outdoor waypoint nav/gps/filtered

. The points that you are collecting are stored in the file:
~/outdoor_waypoint_nav/waypoint_files/points_sim.txt

Here there is no mistery at all about what are we doing. The whole process of collecting the points is done in
the key _teleop.py file, and it works as follows:

. The node subscribes to the /outdoor_waypoint_nav/gps/filtered topic. That is the one that is
providing the coordinates of the robot in UTM.
. Everytime you press the y-key, the current UTM coordinates are stored in the points_sim.txt file

The big work is done by the localization system that we launched on the previous section, that is, to get the
robot localized on the environment using the GPS.

Step 4. Reproduce the recorded trajectory

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 12/19

5/24/2018 ros-extra-2

Whenever you are happy with the number of points you have, you are now ready to try to reproduce them.
For that, you just have to launch the following package:

In []:

> roslaunch outdoor waypoint nav send goals sim.launch

This executes the node gps_waypoint described in gps_waypoint.cpp C++ file.

What does this node do?

1. Reads a value from the file of points

2. Converts that point from long/lat to UTM frame

3. Converts the point from UTM to odom point

4. Sends the map point as a goal to the move_base navigation system (that we have launched in the
navigation section above)

Transforming from long/lat to UTM

We use a provided library by RobotLocalization that allows us to do the conversion.

In []:

RobotLocalization::NavsatConversions::LLtoUTM(lati input, longi input, utm y, ut
m x, utm zone);

In Python that would be

In []:

import geonav_transform.geonav_conversions as gc
utmy, utmx, utmzone = gc.LLtoUTM(p.lat,p.lon)

Transforming from UTM to odom

Since the UTM point is inside the /f full frame, we can ask ROS TF to transfor from one frame of TF (the /utm
frame) to another frame (the /odom frame).

In []:

listener.waitForTransform(“odom", "utm", time now, ros::Duration(3.0));
listener.transformPoint("odom", UTM input, map point output);

In Python that would be

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 13/19

5/24/2018 ros-extra-2

In [1:

import geonav_transform.geonav_conversions as gc

Define a local origin, latitude and longitude in decimal degrees
GPS Origin

olat = 49.9

olon = 8.9

Xg2, yg2 = gc.ll2xy(p.lat,p.lon,olat,olon)

Create a move_base navigation goal

We convert the point in /odom frame into a goal that the normal ROS navigation system can understand (a
move_base goal) and we send the goal to it, so it will make the robot move around.

In [1:

MoveBaseClient ac("/move base", true);
move base msgs::MoveBaseGoal goal = buildGoal(map point, map next, final point);
ac.sendGoal(goal); //push goal to move base node

//Wait for result
ac.waitForResult();

. Mission completed!!

If you want to learn more!

We have an online academy that teaches you more about how to make robots navigate with ROS using GPS
or laser sensors. Check the following related courses:

. Mastering with ROS: Summit XL robot (https://goo.gl/iog3x9)
. Mastering with ROS: Jackal robot (https://goo.gl/W19gAW),
. ROS Navigation in 5 days (https://g00.91/9rJq29),

Just check our academy: the Robot Ignite Academy (https://goo.gl/7ARVAR)

)

robotignite

A C A D E MY

(https://goo.gl/7ApVAR)

DISCOUNT COUPON 10% (valid until 15th of May 2018):
D84FEFFC

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 14/19

https://goo.gl/iog3x9
https://goo.gl/W19qAW
https://goo.gl/9rJq29
https://goo.gl/7ApVAp
https://goo.gl/7ApVAp

5/24/2018 ros-extra-2

Additional Useful Information

. More information about the software package used here can be found in the web of the creators,
Clearpath Robotics: Husky Outdoor GPS Waypoint Navigation
(http://www.clearpathrobotics.com/assets/guides/husky/HuskyGPSWaypointNav.html)

. A Python example of following a trajectory of GPS points (GPS points are stored in a var inside the
code). This is just a proof of concept

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html

15/19

http://www.clearpathrobotics.com/assets/guides/husky/HuskyGPSWaypointNav.html

5/24/2018 ros-extra-2

In [1:
#! s/usr/bin/env python

import rospy

import time

import actionlib

from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal, MoveBaseResult, Mov
eBaseFeedback

Import geonav tranformation module

import geonav_transform.geonav_conversions as gc
reload(gc)

Import AlvinXY transformation module

import alvinxy.alvinxy as axy

reload(axy)

import tf

from nav_msgs.msg import Odometry

from tf.transformations import quaternion from euler
from geometry_msgs.msg import Pose, Quaternion

mann

class SimpleGoalState:
PENDING = 0
ACTIVE =1
DONE = 2
WARN = 3
ERROR = 4

mann

We create some constants with the corresponing vaules from the SimpleGoalState
class

PENDING = 0

ACTIVE = 1

DONE = 2

WARN = 3

ERROR = 4

mnn

/move base/goal
PYTHON MESSAGE

rosmsg show move base msgs/MoveBaseGoal
geometry msgs/PoseStamped target pose
std msgs/Header header
uint32 seq
time stamp
string frame id
geometry msgs/Pose pose
geometry msgs/Point position
float64 x

float64 y
file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 16/19

5/24/2018 ros-extra-2

float64 z
geometry msgs/Quaternion orientation
float64 x
float64 y
float64 z

floate4 w

/move _base/cancel

/move base/cmd vel

/move _base/current goal

/move _base/feedback

mnn

definition of the feedback callback. This will be called when feedback
1s received from the action server
1t just prints a message indicating a new message has been received
def feedback callback(feedback):

rospy.loginfo(str(feedback))

def get xy based on lat long(p):
Define a local orgin, latitude and longitude in decimal degrees
GPS Origin
olat = 49.9
olon = 8.9

xg2, yg2 = gc.ll2xy(p.lat,p.lon,olat,olon)
utmy, utmx, utmzone = gc.LLtoUTM(p.lat,p.lon)
xa,ya = axy.l1l2xy(p.lat,p.lon,olat,olon)

rospy.loginfo ("###4#44#4 "+p.name+" A")
rospy.loginfo("LAT COORDINATES ==>"+str(p.lat)+","+str(p.lon))
rospy.loginfo("COORDINATES XYZ ==>"+str(xg2)+","+str(yg2))
rospy.loginfo("COORDINATES AXY==>"+str(xa)+","+str(ya))
rospy.loginfo("COORDINATES UTM==>"+str(utmx)+","+str(utmy))

quaternion = tf.transformations.quaternion from euler(0.0, 0.0, p.theta)
pose = Pose()

pose.position.x
pose.position.y

xg2
yg2

g = Quaternion()

g.Xx = quaternion[0]
g.y = quaternion[1]
g.z = quaternion[2]
g.w = quaternion[3]

pose.orientation = q
return pose

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 17/19

5/24/2018 ros-extra-2

class gps_point:

lat = 0.0
lon = 0.0
theta= 0.0
name="MAP"

initializes the action client node
rospy.init node('move base gps node')

action server name = '/move base'
client = actionlib.SimpleActionClient(action_server name, MoveBaseAction)

waits until the action server is up and running
rospy.loginfo('Waiting for action Server '+action server name)
client.wait for server()

rospy.loginfo('Action Server Found...'+action server name)

points=[]
p=gps_point()
p.lat=49.8999181588
p.lon=8.89996774369
points.append(p)
p.lat=49.7000059083
p.lon=8.89999871302
points.append(p)

n=-1
rate = rospy.Rate(1)

while n < len(points) -1:
print "===========" + str(len(points))

rospy.loginfo("GOING TO POINT N. "+str(n))
next point = points[n]

creates a goal to send to the action server
goal = MoveBaseGoal()

goal.target pose.header.frame id = "/map"
goal.target pose.header.stamp = rospy.get rostime()
goal.target pose.pose = get xy based on lat long(next point)

client.send goal(goal, feedback cb=feedback callback)

You can access the SimpleAction Variable "simple state”, that will be 1 if
active, and 2 when finished.

#Its a variable, better use a function like get state.

#state = client.simple state

state result will give the FINAL STATE. Will be 1 when Active, and 2 if NO
ERROR, 3 If Any Warning, and 3 if ERROR

state result = client.get state()
rospy.loginfo("state result: "+str(state result))

while state result < DONE:
rospy.loginfo("Doing Stuff while waiting for the Server to give a resul
t....")
rate.sleep()

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 18/19

5/24/2018 ros-extra-2

state result = client.get state()
rospy.loginfo("state result: "+str(state result))

rospy.loginfo("[Result] State: "+str(state result))
if state result == ERROR:

rospy.logerr("Something went wrong in the Server Side")
if state result == WARN:

rospy.logwarn("There is a warning in the Server Side")

#rospy.loginfo("[Result] State: "+str(client.get result()))

In []:

file:///fhome/ricardo/Downloads/ROS_EXTRA_CLASS_2/ros-extra-2.html 19/19

